

CANDIDATE NAME

CENTRE

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

Middle Con

*	
_	
Л	
00	
O1	
7	
5	
4	
O	
0	
7	

NUMBER			NUMBER

0445/42

DESIGN AND TECHNOLOGYPaper 4 Systems and Control

May/June 2012

CANDIDATE

1 hour

Candidates answer on the Question Paper.

No Additional Materials are required.

To be taken together with Paper 1 in one session of 2 hours and 15 minutes.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a soft pencil for any diagrams or graphs.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO **NOT** WRITE IN ANY BARCODES.

You may use a calculator.

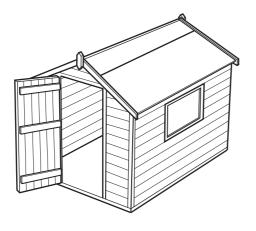
Section A

Answer all questions.

Section B

Answer **one** question.

At the end of the examination, fasten all your work securely together.


The number of marks is given in brackets [] at the end of each question or part question.

For Examiner's Use		
Section A		
Section B		
Total		

This document consists of an 16 printed pages.

Fig. 1a shows a garden shed. The door has structural weakness and needs to be modified to

overcome this weakness.

Fig. 1a

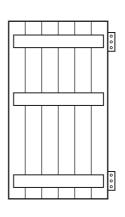


Fig. 1b

(a)	Explain what would happen to the shed door, over a period of time, if the modification was not carried out.

(b) Show on Fig. 1b how the door can be modified to ensure it has greater structural strength. [2]

.....[3]

2 Fig. 2 shows a method of jointing in a framework.

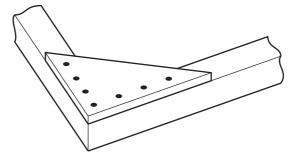


Fig. 2

Name the method shown.

F 4
 [1

www.PatraCambridge.com

3 Fig. 3 shows a graph of load against extension for a metal.

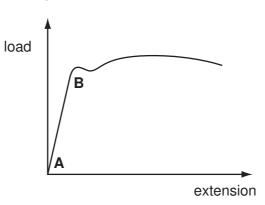


Fig. 3

Explain what is happening between the points A and B .	
	[2]

4 Fig. 4 shows a worm and wormwheel system.

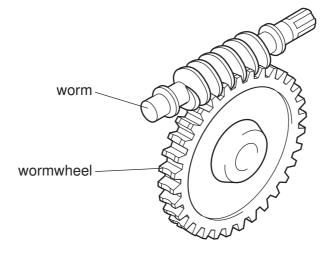


Fig. 4

(a)	Label Fig. 4 to show the input gear and output gear.	
		[1]
(b)	If the wormwheel has 32 teeth, state the gear ratio of the system.	
		[1]

Complete the table below showing mechanisms and their actions. 5

the table below showir	4 ng mechanisms and the	ir actions.
mechanism	sketch	action
spur gears		reduction of speed
crank and slider		

Fig. 5 shows a diagram of a lever system.

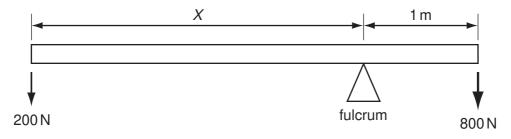
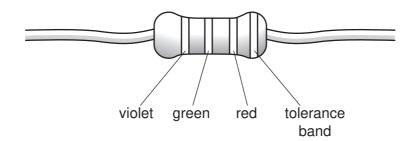


Fig. 5


Calculate the length of *X* for the lever when it is in equilibrium.

You must show all your working.

[3]

7 The table and diagram below show the colour code system for resistors.

	n below show t	T		T
Colour	1st band	2nd band	3rd band	4th band
Black	0	0	-	
Brown	1	1	0	
Red	2	2	00	
Orange	3	3	000	tole
Yellow	4	4	0000	ranc
Green	5	5	00000	tolerance band
Blue	6	6	000000	and
Violet	7	7	0000000	
Grey	8	8	00000000	
White	9	9	000000000	

State the value of this resistor.	You do not need to include the tolerance.	
		[3]

Complete the table showing switches and their uses.

switch	sketch	uses
[1]		reverse current flow to electric motors to change their direction of rotation
reed switch	[1]	burglar alarm system

9	Explain why care is needed when connecting an electrolytic capacitor in a circuit.	For viner's
		Tage co
	[2]	
10	Draw and label the circuit symbol for a NOR logic gate	

[2]

Section B

Answer one question from this section.

11 Fig. 6 shows an incomplete circuit for controlling a greenhouse plant watering system.

component name	component symbol
resistor	
diode	
relay	₽

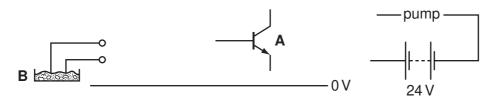


Fig. 6

- (a) (i) Using the components in the table, complete the circuit diagram for the control circuit. [6]
 - (ii) State how component **A** would be fixed to a printed circuit board (PCB).

.....[1]

(iii) State the type of component that would be used at position **B** in the circuit.

.....[2]

(iv) Name and sketch a component that could be added to the circuit to increase its sensitivity.

www.PanaCambridge.com (b) It is decided to add an on/off switch to the circuit. A single pole, single throw toggle is to be used.

(i) Draw the circuit symbol for this type of switch.

		[2]
	(ii)	Name one other type of switch that would be suitable for this application.
		[1]
	(iii)	Explain why a push to make (PTM) switch would not be suitable for this application.
		[2]
(c)	The	circuit uses a resistor.
	Ехр	lain how a resistor affects the voltage in a circuit.
		[2]
(d)	Brie	fly explain how a relay works.
		[3]

For ainer's

(e) Fig. 7 shows a pair of resistors used to control voltage in a circuit.

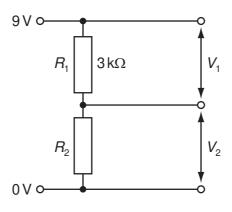


Fig. 7

(i) Name this arrangement of resistors. [1

(ii) Calculate the value of R_2 if the current in the circuit is 1 mA. Show all your workings.

12 Fig. 8 shows a device for launching a ball.

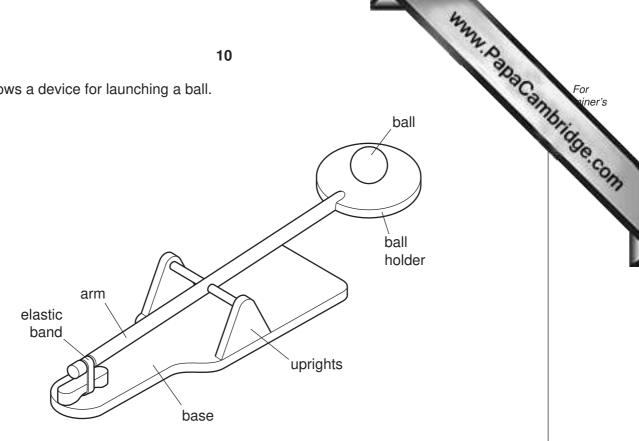


Fig. 8

(a) (i) Identify the class (order) of lever used in the ball-launching device.
[1
(ii) On Fig. 8 label the load, effort and fulcrum for the lever when the ball is launched.
(iii) Explain how the device could be modified so that, when still using one elastic band the ball could be launched higher.
re

(b) Fig. 9 shows a diagram of a lever-operated can-crushing device.

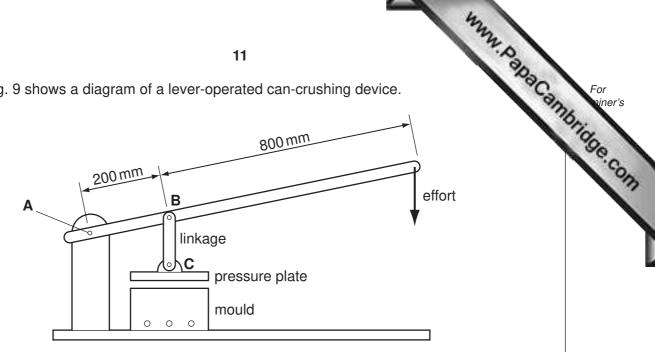


Fig. 9

(i) Calculate the effort required to generate a force of 400 N at the pressure plate C. The pivot **A** is fixed.

Show all your workings.

[3]

(ii) Complete the statement below.

The type of force acting on pin **B** is [1]

www.Papa Cambridge.com

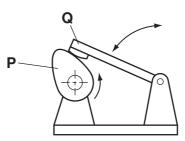


Fig. 10

(i)	Name the two types of motion shown in Fig. 10.	
		[1]
		[1]
(ii)	Give the specific names of parts P and Q .	
	P	[2]
	Q	[2]
(iii)	Give two applications for the mechanism shown in Fig. 10.	
(d) Fig.	. 11 shows a rack and pinion mechanism.	

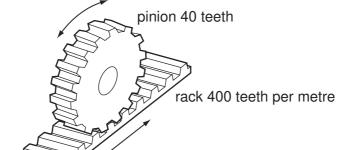


Fig. 11

(1)	Give one example of the use of a rack and pinion system.	
		[1

	(ii)	For the rack and pinion system shown in Fig. 11, calculate the distance method the rack for one rotation of the pinion gear wheel.
		Show all your working.
		[3]
(e)	The	use of bearings and lubrication is important in mechanical systems.
	(i)	Explain how the use of bearings and lubrication reduces the amount of power needed to drive a mechanism.
		[2]
	(ii)	State one type of lubricant used in a motor vehicle transmission system.
		[1]

www.PapaCambridge.com

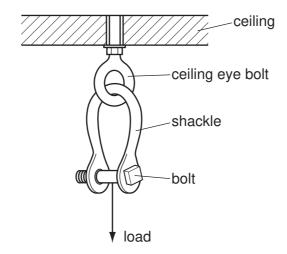


Fig. 12

(a)	(1)	State the forces acting in the shackle and the bolt when loaded as shown in Fig. 12	۷.
		Shackle	1]
		Bolt	2]
	(ii)	State one property of mild steel that makes it suitable for this type of loading.	
		[1]
(b)	Exp	plain how the design of the shackle helps to distribute stress when it is loaded.	
		[3]
(c)	The	e shackle uses a threaded bolt as a temporary fixing.	
	(i)	Explain why a threaded bolt is used in the shackle arrangement.	
		-	

(ii)	Name one permanent fixing method used in structures and give a specific end of the use of this type of fixing method.	For viner's
	Name	[1] Tage
	Example	[1]

(d) Fig. 13 shows a framework for a temporary outdoor stage.

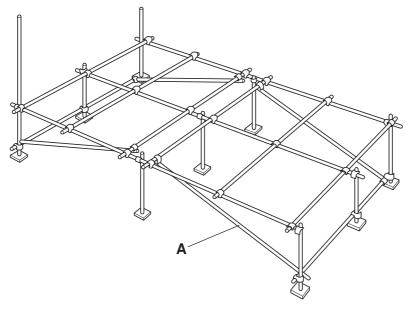
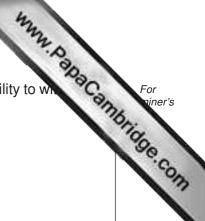



Fig. 13

Name and state the purpose of part	A.
	[2]

(e) Use notes and sketches to explain the term redundant member.

(f) Fig. 14 shows a test sample used in an experiment to test a material's ability to wastress loading.

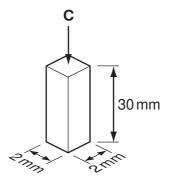


Fig. 14

(i) Calculate the compressive force, ${\bf C}$, that would produce a stress of 250 N/mm² on this sample.

Show all your working.

(ii)	The sample also experiences strain. Explain what is meant by the term strain.	
		[3]

(iii) The sample is compressed from 30 mm to 29.94 mm due to the compressive force. Calculate the strain on the sample. Show all your working.

[3]

[3]