International General Certificate of Secondary Education CAMBRIDGE INTERNATIONAL EXAMINATIONS CO-ORDINATED SCIENCES

0654/3

PAPER 3

OCTOBER/NOVEMBER SESSION 2002

2 hours

Candidates answer on the question paper. No additional materials are required.

TIME 2 hours

INSTRUCTIONS TO CANDIDATES

Write your name, Centre number and candidate number in the spaces at the top of this page. Answer all questions.

Write your answers in the spaces provided on the question paper.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets [] at the end of each question or part question.

A copy of the Periodic Table is printed on page 20.

FOR EXAMI	NER'S USE
1	
2	
3	
4	
5	
6	
7	
8	
9	
TOTAL	

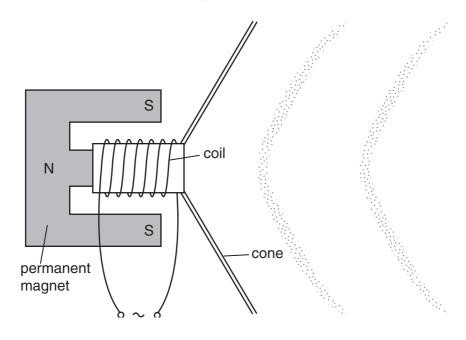
1 (a) Sound travels at 330 m/s in air.

www.Papa Cambridge.com The table in Fig. 1.1 shows some information about three tuning forks. Complete Fig. by calculating the missing values.

Show your working in the space underneath the table.

tuning fork	frequency/Hz	wavelength in air/m
1	288	1.146
2	320	
3		0.773

Fig. 1.1


[3]

(b) The frequencies of the tuning forks in (a) are easily heard by humans. State the maximum and minimum frequency which humans can usually hear.

maximum frequency

[2] minimum frequency

(c) A loudspeaker works in the same way as an earphone.

www.PanaCambridge.com Number the statements below from one to six to explain how a loudspeaker work The first has been completed for you.

1

[3]

(d)	When sound signals need to be transmitted over long distances, they are first converted
	to radio waves. The radio waves are modulated.

Explain what is meant by wave modulation.

 	[2]

2 In Canada, where it is cold at some times of year, cucumbers are grown in green Growers usually increase the concentration of carbon dioxide in the atmosphere in greenhouse to about 0.1%, because this increases the yield of fruit from the plants.

		way.	
		4	For Examiner's
O	wers	da, where it is cold at some times of year, cucumbers are grown in green usually increase the concentration of carbon dioxide in the atmosphere in use to about 0.1%, because this increases the yield of fruit from the plants.	For Examiner's Use
)	(i)	State the normal concentration of carbon dioxide in the atmosphere.	Se.Co.
			[1]
	(ii)	Explain why increasing the concentration of carbon dioxide increases the yield fruit from the cucumber plants.	of
			[2]

(b) In winter, the greenhouses are heated and are kept completely closed. In summer however, when it is warmer outside, ventilators in the greenhouse roof have to be opened to prevent the temperature from getting too high. This means that it is wasteful to add extra carbon dioxide to the greenhouse in summer, because much of it would escape through the open ventilators.

The ventilators open automatically when the temperature reaches a certain level. An experiment was carried out to find the best temperature at which the ventilators should open, when the atmosphere in the greenhouse contains 0.1% CO₂. The table in Fig. 2.1 shows the results.

temperature at which ventilators open / °C	mean number of fruit per plant	mean mass of fruit per plant/kg
23	9.9	4.48
25	11.4	5.20
27	11.1	5.14

Fig. 2.1

(1)	Explain how opening the ventilators would allow the greenhouse to cool down.
	[2]
(ii)	Using the information above, and also your own knowledge about how temperature affects living organisms, explain why there is a better yield of cucumbers when the ventilators open at 25 °C than when they open at 23 °C.

			3		8	
(iii)		t an explanation foors open at 27 °C ar		between the yield at 25 °C.	of fruit with Party	
					[2]	
gree poly carb	enhouses (ethene)	s. Four identical g . In one of each ty de was provided, a	reenhouses were ype of greenhouse	of material from w constructed, usin e, extra light was p es were not heate	g either glass or provided. No extra	
		gla	ISS	poly(et	thene)	
		no extra light	extra light	no extra light	extra light	
mean number of fruit per plant 4.83 7.00 4.			4.75	7.42		
mean mass of fruit per plant/kg 2.26 3.38			3.71 4.96			
			Fig. 2.2			
(i)		ne property shared cting greenhouses.	by glass and poly(ethene) that makes	s them suitable for	
					[1]	
(ii)	(ii) Suggest why the yields from the cucumber plants in this experiment are almost all lower than the yields shown in the first experiment.					
					[1]	
(iii)				suggest the growi		

would produce the highest yield of cucumbers when grown in a greenhouse.

Fig. 2.1 about some o	data abay	ut the ele	6	the coor	and navia	d of the I	www.	Ne -248	For Examiner's Use
Fig. 3.1 shows some of symbol	Li	Be	B	C C	N	O the F	F	Ne	Bridge
melting point/°C	181	1283	2027	3727	-210	-219	-220	-248	3.6
electron configuration of atoms	2,1	2,2	2,3	2,4	2,5	2,6	2,7	2,8	

Fig. 3.1

(a)	(i)	The melting points and electron configurations of the elements lithium to neon are part of a periodic pattern.
		Explain briefly what is meant by the term <i>periodic pattern</i> .
		[2]
	(ii)	Predict which element in the third period, sodium to argon, will have the highest melting point.
		Explain your answer briefly.
		[2]
(b)		lain in terms of their structures why the melting point of carbon is much higher than of neon. You may wish to draw diagrams to help your answer.
		The state of the s
		[3]

For Examiner's

- (c) Nitrogen, N_2 , combines with fluorine, F_2 , to form the covalent compound trifluoride, NF_3 .
 - (i) Draw a diagram of one molecule of nitrogen trifluoride, showing how all the outer electrons are arranged.

		[2]
(ii)	Write a balanced equation for the formation of nitrogen trifluoride.	
		[1]

Fig. 4.1 shows a circuit containing three identical 6 ohm resistors. 4

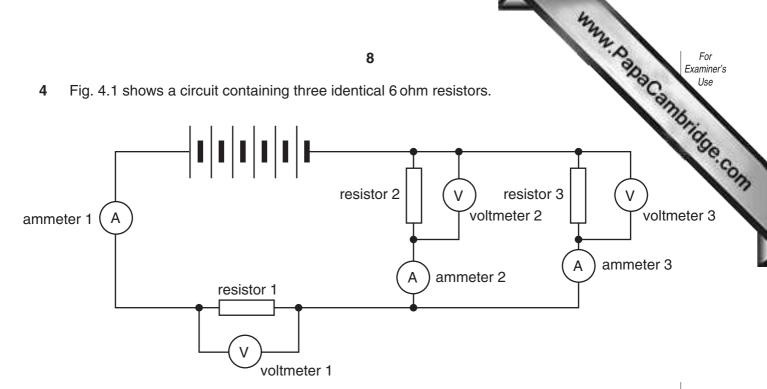


Fig. 4.1

(a)	Ammeter 1 reads 1 A.	
	State the reading on	
	ammeter 2	
	ammeter 3	[2]
(b)	Each cell supplies 1.5 V.	
	What is the total voltage supplied?	
		[1]
(c)	Voltmeter 2 reads 3 V.	
	State the reading on	
	voltmeter 1	
	voltmeter 3	[2]
(d)	Calculate the combined resistance of resistors 2 and 3.	

Show your working.

Combined resistance =[3]

	Way.	
	9	For Examiner's
(e)	When a poly(ethene) rod is rubbed with a cloth, it acquires a negative electric charge. During this process a very small electric current flows. Explain what is happening.	Onidge:
		S. COM
		1
	[N]	

Fig. 5.1 shows the human excretory system. 5

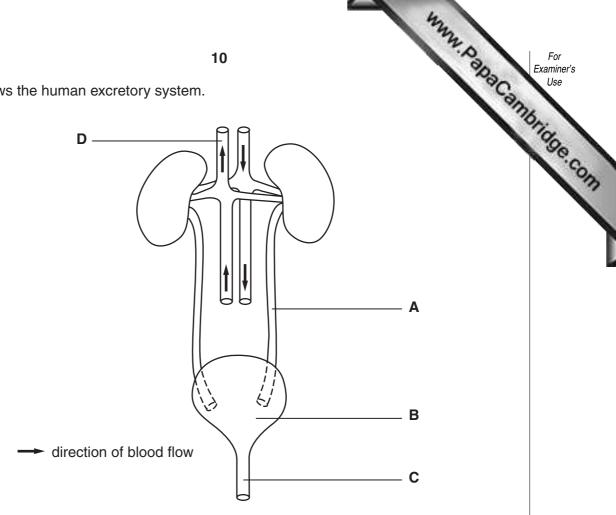


Fig. 5.1

(a)	(i)	(i) Name the structures labelled A, B and C.			
		A			
		В			
		C	3]		
(ii) On Fig. 5.1, draw a label line to a blood vessel that contains a relative concentration of urea, and label it U.					
(iii) State the chamber of the heart into which blood in vessel D will flow.					
		[1]		
(b) Explain why the volume of urine that is excreted by the kidneys is likely to be mu greater on a cold day than on a hot day.			:h		
			•••		
			•••		
		r.			

ĺ	For
l	Examiner's
	1100

(C)	treated and then released into the sea.
	With reference to the processes taking place in the water cycle, explain how some the water in urine could become part of a tree many miles away from the sea.
	[3]

www.Papa Cambridge.com 6 Fig. 6.1 shows an electrochemical cell in which pieces of zinc and copper are used electrodes. The diagram also shows the direction that electrons move in the circuit.

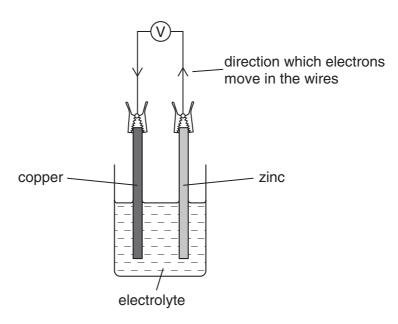


Fig. 6.1

Electrons move through the wires when metal atoms in the electrodes change into ions.

(a)	Sug	uggest how a suitable electrolyte for this cell could be made.					
		[1]					
(b)	(i)	Explain why the zinc electrode is described as being oxidised when the cell is working.					
		[1]					
	(ii)	How does the direction of the electron flow in this cell show that zinc is a more reactive metal than copper?					
		[2]					
	(iii)	Copper is more reactive than silver.					
		State and explain how the voltmeter reading will change if the copper electrode is replaced by silver.					

(c) Describe the bonding in a typical metal such as copper, and explain briefly why

1	For
l	Examiner's

www.PapaCambridge.com are good conductors of electricity. You should draw a diagram to help your answer.[3] (d) Magnesium reacts with copper sulphate solution according to the equation below. $\rm Mg + CuSO_4 \rightarrow MgSO_4 + Cu$ Describe one observation which could be made during this reaction.[1] Calculate the mass of copper which is produced when 0.48 g of magnesium react in excess copper sulphate solution. Show your working.

e) Fig. 6.2 represents atoms in	14 some pieces of ma	ignesium, calcium a	nd strontium.	For Examiner's Use
				Tage con
element	magnesium	calcium	strontium	
combined mass of these atoms/atomic mass units	264	440	440	

Fig. 6.2

⊏xpiairi amount	two o	n triese	elements	a chemisi	would	say i	are p	resent	in the	Same
	 									[2]

١	For
l	Examiner's

www.PapaCambridge.com (a) For each of the four proteins listed below, describe where they are found and their functions. haemoglobin (i) (ii) antibody (iii) protease[2] (iv) insulin[2] (b) Describe how you would find out if a sample of food contained protein.

8 Fig. 8.1 shows a car lift being used to lift a car, which weighs 10 000 N.

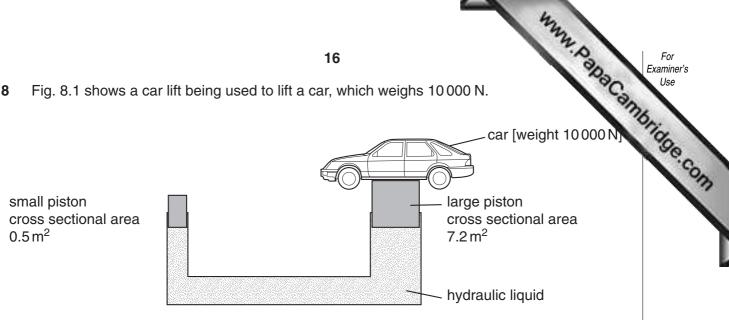


Fig. 8.1

(a) (i) Calculate the pressure that is exerted on the large piston. Show your working and state any formula that you use.

		[3]
	(ii)	State the pressure that the small piston exerts on the fluid. Explain your answer.
		[2]
(b)	The	car lift is an example of a hydraulic lift, which is a force multiplier.
	With	reference to Fig. 8.1, explain the meaning of this term.
		[2]
(c)	A hy	draulic lift uses a liquid to transmit pressure.
	(i)	Explain in terms of particles why liquids can be used to transmit pressure in this way.

1	For
	For Examiner's
	11

		17 KANANA, D. For	
		Examiner's	
	(ii)	17 Explain why it is important that hydraulic liquids should contain no gas bubb. [2]	
		[2] Ode G	1
(d)	(i)	Describe what happens to the pressure of a fixed volume of gas when the temperature is raised.	3
		[2]	
	(ii)	At what temperature would a gas have zero pressure? Explain your answer.	
		[2]	

			m	
		18	3	0
The	chemical formulae of thre	ee ionic compounds are s	shown below.	ASC.
	NaC <i>l</i> sodium chloride	${\sf CaCl}_2$ calcium chloride	Na ₂ CO ₃ sodium carbonate	A BARBC BANA
(a)	The symbols and charge	es of some of the ions in t	hese compounds are shown b	pelow.
	Na	a ⁺ Ca ²⁺	Cl ⁻	
	Deduce the formula and a	charge of the carbonate	ion.	
	The presence of calcium	n chloride in water causes	s permanent hardness. Washi hard water in order to soften i	ing soda
	The reaction between ca	lcium chloride and sodiu	m carbonate produces a preci	pitate.
	(i) Complete the word	equation.		
	calcium chloride	e + sodium carbona	ate \rightarrow	
				[2]
	ii) Explain why this rea	action softens the water.		
				[1]
(-	experiment, using soap so ermanently hard water.	olution, which could show that	t sodium

For Examiner's Use

(iv)	State one other method of softening permanently hard water and explain how it works.
	[3]

DATA SHEET The Periodic Table of the Elements

								Gr	oup								
I	П											III	IV	V	VI	VII	0
							1 H Hydrogen										4 He Helium
7 Li Lithium	9 Be Beryllium											11 B Boron	12 C Carbon	14 N Nitrogen	16 O Oxygen 8	19 F Fluorine	20 Ne Neon
23 Na Sodium	24 Mg Magnesium 12											27 Al Aluminium 13	28 Si Silicon	31 P Phosphorus 15	32 S Sulphur	35.5 Cl Chlorine 17	40 Ar Argon
39 K Potassium	40 Ca Calcium	45 Sc Scandium 21	48 Ti Titanium 22	51 V Vanadium 23	52 Cr Chromium 24	55 Mn Manganese 25	56 Fe Iron	59 Co Cobalt 27	59 Ni Nickel	64 Cu Copper 29	65 Zn Zinc 30	70 Ga Gallium	73 Ge Germanium 32	75 As Arsenic 33	79 Se Selenium 34	80 Br Bromine 35	84 Kr Krypton 36
85 Rb Rubidium	88 Sr Strontium 38	89 Y Yttrium 39	91 Zr Zirconium 40	93 Nb Niobium	96 Mo Molybdenum 42	Tc Technetium 43	101 Ru Ruthenium 44	103 Rh Rhodium 45	106 Pd Palladium 46	108 Ag Silver	112 Cd Cadmium 48	115 In Indium	119 Sn Tin	122 Sb Antimony 51	128 Te Tellurium 52	127 I lodine 53	131 Xe Xenon 54
133 Cs Caesium	137 Ba Barium 56	139 La Lanthanum 57 *	178 Hf Hafnium 72	181 Ta Tantalum 73	184 W Tungsten 74	186 Re Rhenium 75	190 Os Osmium 76	192 Ir Iridium	195 Pt Platinum 78	197 Au Gold 79	201 Hg Mercury 80	204 T Thallium 81	207 Pb Lead 82	209 Bi Bismuth	Po Polonium 84	At Astatine 85	Rn Radon 86
Fr	226 Ra Radium 88	227 Ac Actinium 89 †															
	anthanoid	series		140 Ce Cerium 58	141 Pr Praseodymium 59	144 Nd Neodymium 60	Pm Promethium 61	150 Sm Samarium 62	152 Eu Europium 63	157 Gd Gadolinium 64	159 Tb Terbium 65	Dy Dysprosium 66	Holmium 67	167 Er Erbium 68	Tm Thulium 69	173 Yb Ytterbium 70	175 Lu Lutetium 71
	a a	= relative aton	nic mass	232		238											

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

Plutonium

Am

Americium

Cm

Curium

Bk

Berkelium 97

Cf

Californium

Es

Einsteinium

Fm

Fermium

Md

Mendelevium 101

X = atomic symbol

b = proton (atomic) number

Th

Thorium

U

Uranium

Protactinium

Np

Neptunium 93