Name

www.PanaCambridge.com UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

CO-ORDINATED SCIENCES

0654/03

Paper 3

October/November 2004

2 hours

Candidates answer on the Question Paper. No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen in the spaces provided on the Question Paper. You may use a soft pencil for any diagrams, graphs, tables or rough working. Do not use staples, paper clips, highlighters, glue or correction fluid.

Answer all questions.

The number of marks is given in brackets [] at the end of each question or part question. A copy of the Periodic Table is printed on page 24.

If you have been given a label, look at the details. If any details are incorrect or missing, please fill in your correct details in the space given at the top of this page.

Stick your personal label here, if provided.

For Examiner's Use				
1				
2				
3				
4				
5				
6				
7				
8				
9				
10				
Total				

www.PapaCambridge.com 1 (a) Fig. 1.1 shows how the radiation detected from a sample of carbon-14 would chan

Fig. 1.1

Use the graph to calculate the half life of carbon-14. Show your working on the graph.

(b) When a carbon-14 atom ($^{14}_{6}$ C) emits radiation it changes into a nitrogen atom ($^{14}_{7}$ N). Using this information, suggest the type of radiation emitted by carbon-14. Explain your answer.

www.papaCambridge.com 2 Popcorn is a popular food. It is made by heating grains of the maize plant. Fig. 2.1 cross section through a typical maize grain.

Fig. 2.1

When the grain is heated, water in the endosperm vaporises and turns to steam. As the temperature increases, the pressure of the steam increases, and the starch in the endosperm softens and becomes fluid (more like a liquid than a solid). When the pressure inside the grain is high enough, the steam and fluid starch break through the seed coat. Fig. 2.2 shows the popped maize grain.

Fig. 2.2

(a)	Starch and glucose are carbohydrates. Starch is made of polymer molecules which can
	be broken down into glucose molecules.

(i)	Name the three elements in all carbohydrates.
	[1]
(ii)	Using starch and glucose as examples, explain briefly the meanings of the terms monomer and polymer.
	[2]
(iii)	Proteins are another very important group of substances made of polymer molecules. Name the element found in all proteins but not in carbohydrates.
	[1]

- (b) Explain in terms of the motion of molecules why the steam pressure inside the grain increases when the temperature increases.
- (c) The starch, which bursts through the seed coat when the maize grain pops, cools quickly to form a solid foam. Fig. 2.3 shows a magnified view of the inside of the solid foam.

Fig. 2.3

(i) What general name is given to a mixture in which one substance is dispersed in another?

_____[1

(ii) An emulsion, such as milk, is an example of a mixture in which one substance is dispersed in another.

Explain why it is not possible to see through emulsions like milk. Draw some light rays on the diagram in Fig. 2.4 to help you to answer this question.

Fig. 2.4

(d) Popcorn is often made by heating the maize grains in a cooking pot made a aluminium alloy.

In the boxes below, draw labelled sketches to show how the atoms are arranged in a piece of pure aluminium and in a piece of an aluminium alloy. One aluminium atom has been drawn in each box.

O	0
pure aluminium	aluminium alloy

[4]

3 Fig. 3.1 is a photograph of part of a leaf, taken using a light microscope.

palisade layer

> spongy layer

Fig. 3.1

- (a) The presence of chloroplasts shows that these are plant cells, and not animal cells.
 - (i) On the photograph, label **one** feature, other than chloroplasts, which is present in plant cells but not in animal cells. [1]

	(ii)	Describe	e the fu	inction	of the	featur	re you	have la	belled					
													[2]
(b)	•	lain how ctively.	the st	tructur	e of	these	cells	enables	phot	osynthe	sis to	be d	arried o	ut
	••••													•••
	•••••										•••••			•••
											• • • • • • • • • • • • • • • • • • • •			
													Г	21

		the state of the s	
		7	For Examiner's
(c)	Exp follo	olain how the position of these cells in the leaf enables them to obtain each owing requirements for photosynthesis.	Use
	(i)	light	age.
			CO.
		[2]	
	(ii)	carbon dioxide	
		[2]	
(d)	Wha	at name is given to a group of similar cells such as the palisade layer in a leaf?	
		[1]	

4 (a) Fig. 4.1 shows an athlete running a race.

Fig. 4.1

Some forces acting on the athlete are

- a support force, A, from the ground pushing on the athlete,
- a friction force, **B**, from the ground helping the athlete to move,
- the weight, **C**, of the athlete,
- the force of air resistance, **D**, which slows the athlete.

Draw arrows on Fig. 4.1 to show the direction of each of these forces. Label each force clearly using the letters $\bf B - \bf D$. The direction of force $\bf A$ has been drawn for you. [2]

(D)	these characteristics may be useful to a sprinter as he accelerates from the starting blocks.
	[3

(c)	A spectator is sitting 85 m from the starting gun. When the race is started, the spees the athletes run off and a little later hears the bang from the starting gun. spectator thinks that there was a false start, when the athletes started running before the starting gun was fired. The speed of sound is 340 m/s. Explain why the athletes did not have a false start.	For Examiner's Use

www.PatraCambridge.com A student investigated the reaction of four metals, P, Q, R and S, with dilute hydro 5 acid. Fig. 5.1 shows what the student observed during the experiment.

			Fig. 5.1	
(a)	Nan	ne the gas given off in th	ese reactions.	
				[1]
(b)	The	student thought that the	e results clearly showed the reactivity order of t	he metals.
	(i)	List the metals in reacti	vity order suggested by the observations.	
			(most reactive)	
			(least reactive)	[1]
	(ii)		hat would need to be kept the same for each a reliable indication of the reactivity of the meta	
		1		
		2		
		3		[3]

(c) The student then investigated the electrolysis of seven aqueous solutions, us apparatus shown in Fig. 5.2.

Fig. 5.2

His results are shown in Table 5.1.

Table 5.1

solution	product at electrode A	product at electrode B
potassium sulphate	hydrogen gas	oxygen gas
magnesium nitrate	hydrogen gas	oxygen gas
copper sulphate	copper metal	oxygen gas
silver nitrate	silver metal	oxygen gas
potassium chloride	hydrogen gas	chlorine gas
magnesium chloride	hydrogen gas	chlorine gas
copper chloride	copper metal	chlorine gas

Part of the reactivity series is shown below.

potassium (most reactive)

magnesium (hydrogen) copper

silver (least reactive)

(i) Use the patterns in the results shown in Table 5.1 to predict the electrode products in the examples below.

solution	product at electrode A	product at electrode B
copper nitrate		
magnesium sulphate		

[2]

6

		12
	(ii)	Suggest a general rule for predicting the product at electrode A from the reserves.
		[2]
Fig.	6.1	s a transverse section through a human eye.
		ciliary muscle
		Fig. 6.1
(a)	On	the diagram, draw label lines to
	(i)	the area where an image is focused, and label it F , [1]
	(ii)	a part of the eye that prevents too much light from reaching the retina, and label it P . [1]
(b)	Des	cribe how information from the eye is transmitted to the brain.

		the state of the s
		13
(c)	Exp obje	lain how the contraction of the ciliary muscle helps the eye to focus on a ect.
		[3]
(d)	The	e eyes of snakes contain only cones, with no rods.
	Use	e this information to make two statements about the vision of snakes.
	1	
	2	
		[2]
(e)	thei loca	ny snakes hunt for prey, such as small mammals, at night. They have structures in r heads called pit organs, which can sense infra-red radiation. This helps them to ate their prey even when it is completely dark, because small mammals emit much re infra-red radiation than their surroundings.
	(i)	State one way in which infra-red radiation differs from light.
		[1]
	(ii)	Suggest why mammals emit much more infra-red radiation than their surroundings.
		[2]

7 Fig. 7.1 shows the motion of a bus from one stop to the next.

Fig. 7.1

[2]

/뇨\	Calculate the	diatanaa aa	warad by tha	hua fram A	+~ D	Charryan	r wastkina
(())	Calculate me	distance co	iverea av me	DUS HOIL A	(IO L)	SHOW YOU	I WOIKING.

.....[3]

(c) Fig. 7.2 shows two toy buses. Bus A has a mass of 0.5 kg and bus B has a h 0.3 kg. Both buses are moving in the same direction.

Fig. 7.2

Bus A is travelling at 1.0 m/s and bus B is travelling at 0.5 m/s. When they collide, bus A and bus **B** join together and move in the same direction.

Calculate the speed at which they continue to move.

Show your working and state the formula that you use.

formula used

working

																												•										[3	3	
--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	---	--	--	--	--	--	--	--	--	--	----	---	--

For Examiner's Use

(d) The headlamps on a bus are connected in parallel as shown in Fig. 7.3.

Fig. 7.3

Each headlamp has a resistance of 4 ohms. Calculate the combined resistance of the two headlamps.

Show your working and state the formula that you use.

formula used

working

	[2
--	----

For Examiner's Use

8 The manufacture of ammonia and of sulphuric acid are two important industrial process.

Fig. 8.1 is a simplified diagram of the type of reaction vessel which is used in both processe

Fig. 8.1

(a)	The	manufacture	of	ammonia	and	of	sulphuric	acid	both	involve	reversible,	redox
	reac	tions which re	qu	ire a cataly	st.							

		[1]
(ii)	The reactant gases required to make ammonia are nitrogen and hydrogen.	
	Explain why the exit gas stream contains all three of these gases.	
		[2]

(iii) The equation below shows one of the reactions involved in the manufacture of sulphuric acid. The equation is not balanced.

Balance the equation.

(i) State the purpose of a catalyst.

$$SO_2 + O_2 \iff SO_3$$
 [1]

 $\mbox{(iv)}\quad\mbox{Name the substance that is oxidised in this reaction.}$

[1]
 г.л

www.Papa Cambridge.com (b) Draw a diagram of an ammonia molecule, NH₃, showing how the outer electron arranged.

[2]

(c) Ammonia reacts with dilute nitric acid to make the salt ammonium nitrate.

$$\mathrm{NH_3}$$
 + $\mathrm{HNO_3}$ \longrightarrow $\mathrm{NH_4NO_3}$

A student makes a solution of ammonium nitrate by mixing the solutions shown in Fig. 8.2.

Fig. 8.2

(i) Show that the number of moles of ammonia and the number of moles of nitric acid that the student uses are both 0.01.

For Examiner's Use

(ii) The student leaves the mixture to evaporate. Calculate the mass of ammonium nitrate crystals that she will obtain. (relative atomic masses N = 14; O = 16; H = 1.)

....[3]

For Examiner's

9 Hog deer (Fig. 9.1) are herbivores which live in regions of Pakistan and India. They grass. Hog deer are killed and eaten by tigers.

Fig. 9.1

(a) (i) Construct a food chain using the information above.

(ii)	What do the arrows in your food chain represent?
	[1

(iii) Sketch a pyramid of biomass representing this food chain. Label each part of the pyramid using the correct terms for the feeding levels.

[1]

		deer are normally brown, but occasionally an albino (pure white) hog deer suggest how this might occur.	
		21	For Examiner's
(b)	Hog	g deer are normally brown, but occasionally an albino (pure white) hog deer is	Use
	(i)	Suggest how this might occur.	Bride
			26.C
		[2]	
	(ii)	Explain how natural selection is likely to ensure that very few albinos are present in a population of hog deer.	
		[1]	

			42	
			22	For
10	(a)		crowaves travel at 300 000 000 m/s. Calculate the frequency of a microwivelength 6 cm. bow your working and state the formula that you use.	Use
		Sho	ow your working and state the formula that you use.	Tage C
		forn	mula used	133
				1
		wor	rking	
			[3]	
	(b)	tem	microwave oven was used to heat 0.5 kg of milk contained in a plastic cup. The apperature of the milk was 15 °C when it was placed in the microwave oven and 95 °C en it was taken out.	
		The	e specific heating capacity for milk is 4500 J/kg °C.	
		(i)	Calculate the amount of energy transferred from the microwave oven to the milk.	
			Show your working and state the formula that you use.	
			formula used	
			working	
			[3]	

	the state of the s	Mary Mary				
	23	For xaminer's				
To I	heat the milk, 240 000 J of electrical energy was transferred to the microwave	Use				
(ii)	heat the milk, 240 000 J of electrical energy was transferred to the microwave. Use your answer to part (i) to calculate the efficiency of the energy transfer.	idge com				
	[1]					
(iii)	Suggest why the energy transfer is not 100% efficient.)				
	[1]					

(c) Fig. 10.1 shows a reed switch used as a safety device in a microwave oven.

Fig. 10.1

Suggest what the reed switch contains and ho only operates when the oven door is shut.	w this ensures that the microwave oven
	[3]

DATA SHEET The Periodic Table of the Elements

3-71 Lanthanoid series 0-103 Actinoid series

140 Ce Cerium	141 Pr Praseodymium 59	144 Nd Neodymium 60	Pm Promethium	150 Sm Samarium 62	152 Eu Europium 63	157 Gd Gadolinium 64	159 Tb Terbium	162 Dy Dysprosium 66	165 Ho Holmium	167 Er Erbium	169 Tm Thulium	173 Yb Ytterbium 70	175 Lu Lutetium 71
232 Th Thorium	Pa Protactinium 91	238 U Uranium 92	Np Neptunium 93	Pu Plutonium 94	Am Americium 95	Cm Curium 96	Bk Berkelium 97	Cf Californium 98	Es Einsteinium 99	Fm Fermium 100	Md Mendelevium 101	No Nobelium 102	Lr Lawren 103

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).