Cambridge International Examinations

Cambridge International General Certificate of Secondary Education

ADDITIONAL MATHEMATICS

Paper 1
May/June 2016
MARK SCHEME
Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the May/June 2016 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - May/June 2016	0606	12

Abbreviations

awrt answers which round to
cao correct answer only
dep dependent
FT follow through after error
isw ignore subsequent working
oe or equivalent
rot rounded or truncated
SC Special Case
soi seen or implied
www without wrong working

Question	Answer	Marks	Guidance
1 (a) (b)	$Y \subset X$ or $Y \subseteq X$ only $Y \cap Z=\varnothing \quad$ or $\quad\}$ only (i) (ii)	B1 B1 B1 B1	
$2 \text { (i) }$ (ii)	$\begin{aligned} & 32-\frac{20}{x}+\frac{5}{x^{2}} \\ & (3 \times 32)+\left(-\frac{20}{x} \times 4 x\right)=16 \end{aligned}$ Accept $16 x^{\circ}$	B3 M1 A1	B1 for each correct term - must be integers $\text { for }(3 \times \text { their } 32)+\left(\frac{\text { their }(-20)}{x} \times 4 x\right)$
3 (i) (ii)	$\begin{aligned} & \mathbf{b}-\mathbf{c}=\binom{6}{-2} \\ & 4+y^{2}=36+4 \\ & y= \pm 6 \\ & \mu+4=2 \lambda \text { or }-4 \mu+24=7 \lambda \\ & \mu-4=-\lambda \text { or } 8 \mu-8=\lambda \\ & \text { leading to } \mu=\frac{4}{3}, \lambda=\frac{8}{3} \mathrm{oe} \end{aligned}$ $\text { allow } 1.33 \text { and } 2.67 \text { or better }$	B1 M1 A1 B1 B1 DB1	may be implied by further correct working for one correct attempt at using the modulus for one correct equation in μ and λ for a second correct equation in μ and λ for both, must have both previous B marks

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - May/June 2016	0606	12

Question	Answer	Marks	Guidance
4	$\begin{aligned} & (4+\sqrt{5}) x^{2}+(2-\sqrt{5}) x-1=0 \\ & x=\frac{-(2-\sqrt{5}) \pm \sqrt{(2-\sqrt{5})^{2}-4(4+\sqrt{5})(-1)}}{2(4+\sqrt{5})} \\ & x=\frac{-(2-\sqrt{5}) \pm \sqrt{9-4 \sqrt{5}+16+4 \sqrt{5}}}{2(4+\sqrt{5})} \\ & =\frac{-(2-\sqrt{5})+5}{2(4+\sqrt{5})} \\ & =\frac{3+\sqrt{5}}{2(4+\sqrt{5})} \\ & =\frac{(3+\sqrt{5})(4-\sqrt{5})}{2(4+\sqrt{5})(4-\sqrt{5})} \\ & =\frac{7+\sqrt{5}}{22} \end{aligned}$	M1 A1 DM1 A1 M1 A1	You must be convinced that a calculator is not being used. for use of quadratic formula (allow one sign error), allow $b^{2}=9-4 \sqrt{5}$ all correct for attempt to simplify the discriminant (minimum of 4 terms must be seen in discriminant, 2 terms involving $\sqrt{ } 5$ and 2 constant terms) for $\frac{3+\sqrt{5}}{2(4+\sqrt{5})}$ or $\frac{3+\sqrt{5}}{8+2 \sqrt{5}}$, ignore negative solution if included for attempt to rationalise an expression of the form $\frac{a \pm b \sqrt{5}}{c \pm d \sqrt{5}}$ as part of their solution of the quadratic Must obtain an integer denominator Final A1 can only be awarded if all previous marks have been obtained
5 (i)	$\begin{aligned} &(1-\cos \theta)(1+\sec \theta) \\ &= 1-\cos \theta+\frac{1}{\cos \theta}-\frac{\cos \theta}{\cos \theta} \\ &= \sec \theta-\cos \theta \\ &= \frac{1}{\cos \theta}-\cos \theta \\ &= \frac{1-\cos ^{2} \theta}{\cos \theta} \\ &= \frac{\sin ^{2} \theta}{\cos \theta} \\ &= \sin \theta \tan \theta \quad \text { www } \end{aligned}$	M1 DM1 A1 A1	M1 for expansion and use of $\sec \theta=\frac{1}{\cos \theta}$ consistently, allow one sign error for attempt at a single fraction, dependent on first M1

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - May/June 2016	0606	12

Question	Answer	Marks	Guidance
(ii)	Alternative method:	M1 DM1 A1 A1 B1 B1 B1	for attempt at a single fraction for second factor and use of $\sec \theta=\frac{1}{\cos \theta}$ for expansion for $\theta=\frac{\pi}{4}$ from $\tan \theta=1$ for $\theta=0$ from $\sin \theta=0$ for $\theta=\pi$ from $\sin \theta=0$
6	$\begin{aligned} & \frac{\mathrm{d}}{\mathrm{~d} x}\left(\mathrm{e}^{3 x}(4 x+1)^{\frac{1}{2}}\right) \\ & =\mathrm{e}^{3 x} \frac{1}{2} \times 4(4 x+1)^{-\frac{1}{2}}+3 \mathrm{e}^{3 x}(4 x+1)^{\frac{1}{2}} \end{aligned}$ $\begin{aligned} & =\frac{2 \mathrm{e}^{3 x}}{(4 x+1)^{\frac{1}{2}}}+3 \mathrm{e}^{3 x}(4 x+1)^{\frac{1}{2}} \\ & =\frac{\mathrm{e}^{3 x}}{(4 x+1)^{\frac{1}{2}}}(2+12 x+3) \\ & =\frac{\mathrm{e}^{3 x}}{(4 x+1)^{\frac{1}{2}}}(12 x+5) \end{aligned}$	B1 B1 B1 DM1 A1	for $r \mathrm{e}^{3 x}(4 x+1)^{-\frac{1}{2}}$ must be part of a sum, $r=\frac{1}{2}$ or 2 or $\frac{1}{2} \times 4$ for $s \mathrm{e}^{3 x}(4 x+1)^{\frac{1}{2}}$ must be part of a sum, s is 1 or 3 for all correct, allow unsimplified for $\frac{\mathrm{e}^{3 x}}{(4 x+1)^{\frac{1}{2}}}(a+b x)$, dependent on first $2 \mathbf{B}$ marks, must be using a correct method, collecting terms in the numerator correctly
$7 \quad$ (i) (ii)	$\begin{aligned} & \cos 3 x=\frac{1}{2}, \quad x=\frac{\pi}{9} \text { or } \begin{array}{l} 0.349,20^{\circ}, \\ \text { allow } 0.35 \end{array} \\ & B\left(\frac{\pi}{3}, 3\right) \text { or }(1.05,3),\left(60^{\circ}, 3\right) \end{aligned}$	M1 A1 B1B1	for correct attempt to solve the trigonometric equation B1 for each, must be in correct position or in terms of $x=$ and $y=$

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - May/June 2016	0606	12

Question	Answer	Marks	Guidance
(iii)	$\begin{aligned} \int_{\frac{\pi}{9}}^{\frac{\pi}{3}} 1-2 \cos 3 x \mathrm{~d} x & =\left[x-\frac{2}{3} \sin 3 x\right]_{\frac{\pi}{9}}^{\frac{\pi}{3}} \\ & =\frac{\pi}{3}-\left(\frac{\pi}{9}-\left(\frac{2}{3} \times \frac{\sqrt{3}}{2}\right)\right) \\ & =\frac{2 \pi}{9}+\frac{\sqrt{3}}{3} \text { oe or } 1.28 \end{aligned}$	M1 A1 DM1 A1	for $x \pm a \sin 3 x$ attempt to integrate at least one term for correct integration for correct use of limits from (i) and (ii), must be in radians
(ii) (iii)	$\lg y=x^{2} \lg b+\lg A$ $\lg b= \pm 0.21$ $b=0.617$ allow $0.62,10^{-0.21}$ $\lg A=0.94$ allow 0.93 to 0.95 $A=8.71$ allow awrt 8.5 to 8.9 Alternative method 5.37 or $10^{0.73}=A b$ 1.259 or $10^{0.1}=A b^{4}$ $b^{3}=10^{-0.63}$ $b=0.617$ allow $0.62,10^{-0.21}$ $A=8.71$ allow awrt 8.5 to 8.9 $x=1.5, x^{2}=2.25$ $y=2.93$, allow awrt 2.9 or 3.0 $\lg y=0.301, \quad$ or $2=8.71(0.617)^{x^{2}}$, $x=1.74$, allow $\sqrt{3}$ or awrt 1.7, 1.8	B1 M1 A1 M1 A1	for $\lg b= \pm 0.21$ may be implied for both equations, allow correct to 2 sf for correct use of graph $y=$ theirA \times theirb $b^{1.5^{2}}$ or $\lg y=\lg$ their $A+\left(1.5^{2} \lg\right.$ theirb $)$ for correct use of graph to read off x^{2} $\begin{aligned} & 2=\text { theirA }(\text { theirb })^{x^{2}} \text { or } \\ & \lg 2=(\lg \text { theirb }) x^{2}+\lg (\text { their } A) \end{aligned}$
9 (i)	$y=\frac{2}{3}(3 x+10)^{\frac{1}{2}}(+c)$ passes through $\left(2,-\frac{4}{3}\right)$, so $c=-4$ $y=\frac{2}{3}(3 x+10)^{\frac{1}{2}}-4$ oe	B1 B1 M1 A1	for $p(3 x+10)^{\frac{1}{2}}$ where p is a constant for $\frac{2}{3}(3 x+10)^{\frac{1}{2}}$ oe unsimplified for attempt to find c, must have attempt to integrate, must have the first B1

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - May/June 2016	0606	12

Question	Answer	Marks	Guidance
(ii)	When $x=5$, $y=-\frac{2}{3}$ perpendicular gradient $=-5$ Equation of normal: $y+\frac{2}{3}=-5(x-5)$ When $y=-\frac{5}{3}$, $x=5.2 \mathrm{oe}$	B1 B1 M1 A1 DM1 A1	for attempt at the normal using their perpendicular gradient and their y value (but not $y=-\frac{4}{3}$ or $-\frac{5}{3}$). for use of $y=-\frac{5}{3}$ in their normal equation to get as far as $x=\ldots$
10 (i)	$\begin{gathered} \text { Area: } \quad 20=\pi x^{2}+x y \\ y=\frac{20-\pi x^{2}}{x} \\ P=2 \pi x+2 x+2 y \\ =2 \pi x+2 x+2\left(\frac{20}{x}-\pi x\right) \\ =2 x+\frac{40}{x} \end{gathered}$ Alternative method: $\begin{aligned} & 20=\pi x^{2}+x y \\ & P=2 \pi x+2 y+2 x \\ & =\frac{2}{x}\left(\pi x^{2}+x y\right)+2 x \\ & =\frac{2}{x}(20)+2 x \\ & =2 x+\frac{40}{x} \end{aligned}$	B1 B1 M1 A1 B1 M1 B1 A1	for attempt to use perimeter and obtain in terms of x only all steps seen, www AG for attempt to use perimeter and write in $\frac{\pi x^{2}+x y}{x}$ for replacing $\pi x^{2}+x y$ with 20 all steps seen, www AG

Page 7	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - May/June 2016	0606	12

Question	Answer	Marks	Guidance
(ii)	$\frac{\mathrm{d} P}{\mathrm{~d} x}=2-\frac{40}{x^{2}}$ When $\frac{\mathrm{d} P}{\mathrm{~d} x}=0$, $x=2 \sqrt{5} \quad \text { allow } 4.47, \sqrt{20}$ leading to $P=8 \sqrt{5}$, allow 17.9 $\frac{\mathrm{d}^{2} P}{\mathrm{~d} x^{2}}=\frac{80}{x^{3}}$, always positive so a minimum	M1 DM1 A1 A1 A1	for attempt to differentiate for equating to zero and attempt to solve at least as far as $x^{2}=$ for this statement or use of gradient inspection either side of correct x
$11 \text { (a) (i) }$ (ii) (b)	Distance $=$ area under graph $=1275$ deceleration is 1.5 oe	$\begin{gathered} \text { M1 } \\ \text { A1 } \\ \text { B1 } \\ \text { B1 } \\ \hline \text { B1FT } \end{gathered}$	for attempt to find the area, one correct area seen (triangle, rectangle or trapezium) as part of a sum. for a straight line between $(0,0)$ and $(10,60)$ FT a straight line between $(10,60)$ and $(20,90)$, a displacement vector $\binom{10}{30}$ from their (10, their 60)
(c) (i)	$\mathrm{e}^{2 t}$ is always positive or oe	B1	
(ii)	$\begin{aligned} & a=8 \mathrm{e}^{2 t} \\ & \mathrm{e}^{2 t}=\frac{3}{2} \\ & t=\frac{1}{2} \ln \frac{3}{2}, \ln \sqrt{\frac{3}{2}} \text { or } \frac{1}{2} \ln 1.5 \end{aligned}$	M1 A1	for attempt to differentiate, must be of the form $p \mathrm{e}^{2 t}$, equate to 12 and solve. Allow fractions equivalent to $\frac{3}{2}$
(iii)	$\begin{aligned} & s=\left[2 \mathrm{e}^{2 t}+6 t\right]_{0.4}^{0.5} \\ & =(2 \mathrm{e}+3)-\left(2 \mathrm{e}^{0.8}+2.4\right) \\ & (=8.436-6.851) \\ & =1.59, \text { allow } 1.58 \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \\ \text { DM1 } \\ \text { A1 } \end{gathered}$	for attempt to integrate to get $q \mathrm{e}^{2 t}+6 t$ all correct for correct use of limits or considering distances separately, ignore attempts at c

