Cambridge
International
AS \& A Level

Cambridge International Examinations

Cambridge International Advanced Subsidiary and Advanced Level

CANDIDATE NAME

CENTRE NUMBER

CANDIDATE NUMBER

PHYSICS

9702/23
Paper 2 AS Level Structured Questions
May/June 2016
1 hour 15 minutes
Candidates answer on the Question Paper.
No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.
Write in dark blue or black pen.
You may use an HB pencil for any diagrams or graphs.
Do not use staples, paper clips, glue or correction fluid.
DO NOT WRITE IN ANY BARCODES.
Answer all questions.
Electronic calculators may be used.
You may lose marks if you do not show your working or if you do not use appropriate units.
At the end of the examination, fasten all your work securely together.
The number of marks is given in brackets [] at the end of each question or part question.

Data

speed of light in free space permeability of free space permittivity of free space
elementary charge
the Planck constant
unified atomic mass unit
rest mass of electron
rest mass of proton
molar gas constant
the Avogadro constant
the Boltzmann constant
gravitational constant acceleration of free fall

$$
\begin{aligned}
c & =3.00 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1} \\
\mu_{0} & =4 \pi \times 10^{-7} \mathrm{Hm}^{-1} \\
\varepsilon_{0} & =8.85 \times 10^{-12} \mathrm{Fm}^{-1} \\
\left(\frac{1}{4 \pi \varepsilon_{0}}\right. & \left.=8.99 \times 10^{9} \mathrm{mF}^{-1}\right)
\end{aligned}
$$

$$
e=1.60 \times 10^{-19} \mathrm{C}
$$

$$
h=6.63 \times 10^{-34} \mathrm{Js}
$$

$$
1 \mathrm{u}=1.66 \times 10^{-27} \mathrm{~kg}
$$

$$
m_{\mathrm{e}}=9.11 \times 10^{-31} \mathrm{~kg}
$$

$$
m_{p}=1.67 \times 10^{-27} \mathrm{~kg}
$$

$$
R=8.31 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}
$$

$$
N_{\mathrm{A}}=6.02 \times 10^{23} \mathrm{~mol}^{-1}
$$

$$
k=1.38 \times 10^{-23} \mathrm{JK}^{-1}
$$

$$
G=6.67 \times 10^{-11} \mathrm{Nm}^{2} \mathrm{~kg}^{-2}
$$

$$
g=9.81 \mathrm{~m} \mathrm{~s}^{-2}
$$

Formulae

uniformly accelerated motion
work done on/by a gas
gravitational potential
hydrostatic pressure
pressure of an ideal gas
simple harmonic motion
velocity of particle in s.h.m.

Doppler effect
electric potential
capacitors in series
capacitors in parallel
energy of charged capacitor
electric current
resistors in series
resistors in parallel

Hall voltage
alternating current/voltage
radioactive decay
decay constant
$s=u t+\frac{1}{2} a t^{2}$
$v^{2}=u^{2}+2 a s$
$W=p \Delta V$
$\phi=-\frac{G m}{r}$
$p=\rho g h$
$p=\frac{1}{3} \frac{N m}{V}\left\langle c^{2}\right\rangle$
$a=-\omega^{2} x$
$v=v_{0} \cos \omega t$
$v= \pm \omega \sqrt{\left(x_{0}{ }^{2}-x^{2}\right)}$
$f_{\mathrm{o}}=\frac{f_{\mathrm{s}} v}{v \pm v_{\mathrm{s}}}$
$V=\frac{Q}{4 \pi \varepsilon_{0} r}$
$1 / C=1 / C_{1}+1 / C_{2}+\ldots$
$C=C_{1}+C_{2}+\ldots$
$W=\frac{1}{2} Q V$
$I=A n v q$
$R=R_{1}+R_{2}+\ldots$
$1 / R=1 / R_{1}+1 / R_{2}+\ldots$
$V_{\mathrm{H}}=\frac{B I}{n t q}$
$x=x_{0} \sin \omega t$
$x=x_{0} \exp (-\lambda t)$
$\lambda=\frac{0.693}{t_{\frac{1}{2}}}$

Answer all the questions in the spaces provided.
1 (a) A list of quantities that are either scalars or vectors is shown in Fig. 1.1.

quantity	scalar	vector
distance	\checkmark	
energy		
momentum		
power		
time		
weight		

Fig. 1.1
Complete Fig. 1.1 to indicate whether each quantity is a scalar or a vector.
One line has been completed as an example.
(b) A girl runs 120 m due north in 15 s . She then runs 80 m due east in 12 s .
(i) Sketch a vector diagram to show the path taken by the girl. Draw and label her resultant displacement R.

(ii) Calculate, for the girl,

1. the average speed,
average speed $=$
ms^{-1} [1]
2. the magnitude of the average velocity v and its angle with respect to the direction of the initial path.
magnitude of $v=$ ms^{-1}
angle = 。

2 (a) Describe the effects, one in each case, of systematic errors and random errors when using a micrometer screw gauge to take readings for the diameter of a wire.
systematic errors: \qquad
\qquad
random errors: \qquad
\qquad
(b) Distinguish between precision and accuracy when measuring the diameter of a wire. precision: \qquad
\qquad
accuracy: \qquad
\qquad

3 (a) Explain what is meant by gravitational potential energy and by kinetic energy. gravitational potential energy: \qquad
\qquad
kinetic energy: \qquad
\qquad
(b) A motion sensor is used to measure the velocity of a ball falling vertically towards the ground, as illustrated in Fig. 3.1.

ground

,

Fig. 3.1
The ball passes through points A and B as it falls. The ball has a mass of 1.5 kg .

The variation with time t of the velocity v of the ball as it falls from A to B is shown in Fig. 3.2.

Fig. 3.2
Use Fig. 3.2 to calculate, for the ball falling from A to B,
(i) the displacement,
displacement =
(ii) the acceleration,
(iii) the change in kinetic energy.
change in kinetic energy =
(c) Show that the work done by the gravitational field on the ball in (b) as it moves from A to B is equal to the change in kinetic energy.

4 A spring balance is used to weigh a cylinder that is immersed in oil, as shown in Fig. 4.1.

Fig. 4.1
The reading on the spring balance is 4.8 N . The length of the cylinder is 5.0 cm and the crosssectional area of the cylinder is $13 \mathrm{~cm}^{2}$. The weight of the cylinder is 5.3 N .
(a) The cylinder is in equilibrium when it is immersed in the oil. Explain this in terms of the forces acting on the cylinder.
\qquad
\qquad
(b) Calculate the density of the oil.
density =
\qquad

5 (a) State the law of conservation of momentum.
\qquad
\qquad
\qquad
(b) Two particles A and B collide elastically, as illustrated in Fig. 5.1.

before collision

after collision

Fig. 5.1
The initial velocity of A is $500 \mathrm{~ms}^{-1}$ in the x-direction and B is at rest.
The velocity of A after the collision is v_{A} at 60° to the x-direction. The velocity of B after the collision is v_{B} at 30° to the x-direction.

The mass m of each particle is $1.67 \times 10^{-27} \mathrm{~kg}$.
(i) Explain what is meant by the particles colliding elastically.
(ii) Calculate the total initial momentum of A and B .
momentum =
(iii) State an expression in terms of m, v_{A} and v_{B} for the total momentum of A and B after the collision

1. in the x-direction,
2. in the y-direction.
\qquad
(iv) Calculate the magnitudes of the velocities v_{A} and v_{B} after the collision.

$$
v_{\mathrm{A}}=
$$

\qquad

$$
v_{\mathrm{B}}=
$$

ms^{-1}

6 (a) Define the ohm.
\qquad
(b) A 15V battery with negligible internal resistance is connected to two resistors P and Q, as shown in Fig. 6.1.

Fig. 6.1
The resistors are made of wires of the same material. The wire of P has diameter d and length $2 l$. The wire of Q has diameter $2 d$ and length l.

The resistance of P is 12Ω.
(i) Show that the resistance of Q is 1.5Ω.
(ii) Calculate the total power dissipated in the resistors P and Q .
power =
(iii) Determine the ratio
$\frac{\text { average drift speed of the charge carriers in } P}{\text { average drift speed of the charge carriers in } Q}$.
ratio $=$

7 (a) Apparatus used to produce stationary waves on a stretched string is shown in Fig. 7.1.

Fig. 7.1
The frequency generator is switched on.
(i) Describe two adjustments that can be made to the apparatus to produce stationary waves on the string.

1. \qquad
\qquad
2. \qquad
\qquad
(ii) Describe the features that are seen on the stretched string that indicate stationary waves have been produced.
\qquad
(b) The variation with time t of the displacement x of a particle caused by a progressive wave R is shown in Fig. 7.2. For the same particle, the variation with time t of the displacement x caused by a second wave S is also shown in Fig. 7.2.

Fig. 7.2
(i) Determine the phase difference between wave R and wave S . Include an appropriate unit.
phase difference =
(ii) Calculate the ratio
$\frac{\text { intensity of wave } R}{\text { intensity of wave } S}$.
ratio =
[Total: 6]

8 (a) Distinguish between an α-particle and a β^{+}-particle.
\qquad
\qquad
\qquad
\qquad
\qquad
(b) State the equation that shows the decay of a particle in a nucleus that results in β^{+}emission. All particles in the equation should be shown in the notation that is usually used for the representation of nuclides.
(c) (i) State the quark composition of

1. a proton,
\qquad
2. a neutron.
\qquad
(ii) Use the quark model to explain the charge on a proton.
\qquad
\qquad
\qquad
