MARK SCHEME for the October/November 2008 question paper

9702 PHYSICS

9702/32
Paper 32 (Advanced Practical Skills 2), maximum raw mark 40

Mark schemes must be read in conjunction with the question papers and the report on the examination.

- CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2008 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.
Syllabus \quad Paper

1 (a) (ii) Measurement of $\theta .5 \leqslant \theta \leqslant 10^{\circ}$ Ignore d.p.
(b) Six sets of readings scores 6 marks, five sets scores 5 marks, etc.

Help given, -1 (e.g. putting plumbline into position).
Generally wrong trend, -1 . Allow $n=0$.
Range. Maximum angle $\theta_{\text {max }} \geqslant 45^{\circ}$.
Table headings. $\theta /{ }^{\circ} \quad \theta\left({ }^{\circ}\right)$ No unit for $1 / \cos \theta$.
Consistency in raw data - all values of θ given to the nearest 1° or 0.5°.
Calculated quantities. Allow small rounding errors.

- check the specified value of $1 / \cos \theta$ and tick if correct.

Specified value is the largest value of θ.
Significant figures.

- all values of $1 / \cos \theta$ should be to the same s.f. as (or one more than) the raw value of θ.

Quality of data.
5 points close to Examiner's straight line.
Wrong trend/curved trend - no mark.
(c) Points should occupy at least half the grid in both directions and scales should be sensible (not 3, 6, 9 or other awkward) and labelled with a quantity.
Do not penalise reversed axes. Label FO. Ignore units.
Check that one point is correctly plotted (error \leqslant half a small square).
All tabulated results to be plotted on graph grid.
Do not allow blobs (points \geqslant half a small square).
If plot incorrect indicate correct position.
Line of best fit.
At least 5 trend plots. Allow curved trend.
No hairy or thick lines (\geqslant half a small square). No kinks.
(d) Gradient.

Triangle chosen for gradient as a hypotenuse at least half the length of the drawn line.
Read-offs are on the line correct to within half a small square and correct substitution.
Gradient mark $=0$ if curve used. If wrong write in correct read-off. Correct sub into $\Delta y / \Delta x$.
Intercept calculated by a correct method or using the graph.
Allow for extrapolation for curve at $n=0$ (i.e. do not allow algebraic errors with $\mathrm{y}=\mathrm{mx}+\mathrm{c}$).
(e) Correct method and substitution. k equal to $\left(\frac{\text { gradient }}{2 m}\right)$.

Method and value of M within 50% of Supervisor's value.
$M=$ intercept $/ k$.
Allow e.c.f. for k.
Write in Supervisor's value for M underneath.

Page 3	Mark Scheme	Syllabus	Paper
	GCE A/AS LEVEL - October/November 2008	9702	32

2 (b) (i) Measurement of $l 19.0 \leqslant l \leqslant 21.0 \mathrm{~cm}$. Ignore d.p.
Supervisor's help -1.
(ii) Correct method of estimation of percentage uncertainty.
$\Delta l=1 \mathrm{~mm}$ or 2 mm or half the range.
(iii) Correct calculation of first value of $l^{3}\left(20^{3}=8000\right)$.

If incorrect write in correct value. Accept small rounding errors.
(iv) Justification for s.f. for l^{3}. Same or one more than the raw value of l. Consistent with their own data.
(c) Measurement of $T .0 .2 \leqslant T \leqslant 2.0 \mathrm{~s}$
(c) or (d) Measurement of raw t to the nearest 0.1 s or 0.01 s .

Evidence of repeat readings of t.
Evidence of $n \geqslant 10$ oscillations.
(d) Measurement of second l to nearest mm.

Measurement of second $T_{(\mathrm{d})}<T_{(\mathrm{c})}$. Penalise wrong trend.
(e) Correct method and calculation of k values.

Valid comment on whether equation applies to results.
Allow e.c.f. on arithmetic errors of k values. Evidence of correct ratio for one value of k is necessary to access this mark. k values within 10% to support relationship. Allow up to 20% if candidate stated a value.

(f) (i) Problems [4]	(f) (ii) Improvements [4]
A $_{p}$ Not enough readings (to draw a conclusion).	$\mathbf{A}_{\mathbf{s}}$ More readings and plot a graph.
\mathbf{B}_{p} Time too fast/moves too fast/error in timing large compared to time measured.	$\mathbf{B}_{\mathrm{s} 1}$ Video recorder, playback frame by frame/ slow motion with timer/stroboscope with scale. $\mathbf{B}_{\mathbf{s} 2}$ Longer hacksaw blade/heavier mass (to increase time of oscillation)/more oscillations than already used (larger n).
C_{p} Judging beginning/end of oscillation/complete oscillation.	C $_{s}$ Motion/position sensor placed at side of mass/fiducial marker/(stationary) reference marker and stated purpose.
D_{p} Length error e.g. parallax error in reading the ruler/difficulty in establishing centre of mass/ ends of blocks.	D_{s} Find the mid-point of the mass by finding the distance to both ends and taking an average/ thinner rule with reason/scale starts at 0 cm with reason/scale on blade/corrections for parallax error.
E_{p} Difficulty in setting up the apparatus horizontally/difficulty in assembly with detail.	$\mathrm{E}_{\text {s }}$ Use spirit level/measure up from bench/ partner to help with set up.

