UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the October/November 2009 question paper for the guidance of teachers

9702 PHYSICS

9702/21

Paper 21 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2009 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

age 2		Syllabus	Paper	•
	GCE A/AS LEVEL – October/November 2009	9702	21	
(i)				[2]
(ii)	from 'full' to '3/4' mark		B1	[1]
(i)	line/graph does not pass through ('empty, 0) / there is an in (do not allow 'non-linear')	itercept	B1	[1]
(ii)			B1	[1]
			[Tota	ıl: 5]
(i)				[2]
(ii)			B1	[1]
acc (for	celeration = 1.9 ± 0.2 m s ⁻² r values > ± 0.2 but ≤ 0.4, allow 1 mark)		M1 A2	[3]
(i)	(use of $g = 10 \text{ m s}^{-2}$ then deduct mark but once only in the	Paper)		[1] [1]
(ii)	resistive force = 880 – 170 = 710 N			[1]
			[Tota	ıl: 9]
(i)	or total momentum before = total momentum after			[2]
(ii)	•			[2]
(i)	$1.0 \times 10^{-12} = \frac{1}{2} \times 4 \times \underline{1.66} \times 10^{-27} \times v^2$		M1	[2]
(ii)	$1.7 \times 10^7 \times 4u = 216u \times V$		C1	
	(i) (ii) (ii) usacc (fo (ar (i) (ii) (ii) (ii)	(i) car uses 210 / 14 = 15 litres of fuel volume reading = 45 litres	(i) car uses 210 / 14 = 15 litres of fuel volume reading = 45 litres (ii) from 'full' to '3/4' mark (i) line/graph does not pass through ('empty, 0) / there is an intercept (do not allow 'non-linear') (ii) (meter shows zero fuel when there is some left in the tank so) acts as a 'reserve' (ii) (air) resistance increases with speed resultant / accelerating force decreases (ii) either (air) resistance is zero or weight / gravitational force is only force use of gradient of a tangent acceleration = 1.9 ± 0.2 m s² (for values > ± 0.2 but ≤ 0.4, allow 1 mark) (answer 3.3 m s² scores no marks) (i) 1 weight = 90 × 9.8 = 880 N (use of g = 10 m s² then deduct mark but once only in the Paper) 2 accelerating force = 90 × 1.9 = 170 N (allow ecf) (ii) resistive force = 880 – 170 = 710 N (allow ecf but only if resistive force remains positive) (i) either sum / total momentum (of system of bodies) is constant or total momentum before = total momentum after for an isolated system / no (external) force acts on system (ii) zero momentum before / after decay so α-particle and nucleus D must have momenta in opposite directions acceleration energy = ½ mv² 1.0 × 10¹² = ½ x 4 × 1.66 × 10²² × v² v 1.7 × 10² m s¹	GCE A/AS LEVEL - October/November 2009 9702 21

Mark Scheme: Teachers' version

Syllabus

Paper

Page 2

P	Page 3	Mark Scheme: Teachers' version Syllabus	Paper	•
		GCE A/AS LEVEL – October/November 2009 9702	21	
(c)	dece (acce	$(x + 10^7)^2 = 2 \times deceleration \times 4.5 \times 10^{-2}$ $(x + 10^7)^2 = 2 \times deceleration \times 4.5 \times 10^{-2}$ $(x + 10^7)^2 = 2 \times deceleration \times 4.5 \times 10^{-2}$ $(x + 10^7)^2 = 2 \times deceleration \times 4.5 \times 10^{-2}$ $(x + 10^7)^2 = 2 \times deceleration \times 4.5 \times 10^{-2}$ $(x + 10^7)^2 = 2 \times deceleration \times 4.5 \times 10^{-2}$ $(x + 10^7)^2 = 2 \times deceleration \times 4.5 \times 10^{-2}$ $(x + 10^7)^2 = 2 \times deceleration \times 4.5 \times 10^{-2}$ $(x + 10^7)^2 = 2 \times deceleration \times 4.5 \times 10^{-2}$ $(x + 10^7)^2 = 2 \times deceleration \times 4.5 \times 10^{-2}$ $(x + 10^7)^2 = 2 \times deceleration \times 4.5 \times 10^{-2}$ $(x + 10^7)^2 = 2 \times deceleration \times 4.5 \times 10^{-2}$ $(x + 10^7)^2 = 2 \times deceleration \times 4.5 \times 10^{-2}$ $(x + 10^7)^2 = 2 \times deceleration \times 4.5 \times 10^{-2}$ $(x + 10^7)^2 = 2 \times deceleration \times 4.5 \times 10^{-2}$ $(x + 10^7)^2 = 2 \times deceleration \times 4.5 \times 10^{-2}$ $(x + 10^7)^2 = 2 \times deceleration \times 4.5 \times 10^{-2}$ $(x + 10^7)^2 = 2 \times deceleration \times 4.5 \times 10^{-2}$ $(x + 10^7)^2 = 2 \times deceleration \times 4.5 \times 10^{-2}$ $(x + 10^7)^2 = 2 \times deceleration \times 4.5 \times 10^{-2}$ $(x + 10^7)^2 = 2 \times deceleration \times 4.5 \times 10^{-2}$ $(x + 10^7)^2 = 2 \times deceleration \times 4.5 \times 10^{-2}$ $(x + 10^7)^2 = 2 \times deceleration \times 4.5 \times 10^{-2}$ $(x + 10^7)^2 = 2 \times deceleration \times 4.5 \times 10^{-2}$ $(x + 10^7)^2 = 2 \times deceleration \times 4.5 \times 10^{-2}$ $(x + 10^7)^2 = 2 \times deceleration \times 4.5 \times 10^{-2}$ $(x + 10^7)^2 = 2 \times deceleration \times 4.5 \times 10^{-2}$ $(x + 10^7)^2 = 2 \times deceleration \times 4.5 \times 10^{-2}$ $(x + 10^7)^2 = 2 \times deceleration \times 4.5 \times 10^{-2}$ $(x + 10^7)^2 = 2 \times deceleration \times 4.5 \times 10^{-2}$ $(x + 10^7)^2 = 2 \times deceleration \times 4.5 \times 10^{-2}$ $(x + 10^7)^2 = 2 \times deceleration \times 4.5 \times 10^{-2}$ $(x + 10^7)^2 = 2 \times deceleration \times 4.5 \times 10^{-2}$ $(x + 10^7)^2 = 2 \times deceleration \times 4.5 \times 10^{-2}$ $(x + 10^7)^2 = 2 \times deceleration \times 4.5 \times 10^{-2}$ $(x + 10^7)^2 = 2 \times deceleration \times 4.5 \times 10^{-2}$ $(x + 10^7)^2 = 2 \times deceleration \times 4.5 \times 10^{-2}$ $(x + 10^7)^2 = 2 \times deceleration \times 4.5 \times 10^{-2}$	C1 A1	[2]
			[Total	: 10]
4 (a		returns to original shape / size / length etc. when load / distorting forces / weight / strain is removed		[2]
	(ii) <i>'</i>	1 R = ρL/A 2 E = WL/Ae	B1	[1] [1]
(b	o) E = = (3	<i>WR</i> / eρ	C1 C1	
	= 2.	1 × 10 ¹¹ Pa	A1 [Tot a	[3] l: 7]
5 (a		fer / propagation of energyresult of oscillations / vibrations		[2]
(b	o) (i) (displacement / velocity / acceleration (of particles in the wave)	B1	[1]
	` '	displacement etc. is normal to direction of energy transfer / ravel of wave / propagation of wave(not 'wave motion')	B1	[1]
		displacement etc. along / same direction of energy transfer / ravel of wave / propagation of wave(not 'wave motion')	B1	[1]
(c)		ction: suitable object, means of observation	M1	
	or dis	stant sourceregion where darkness expected		
	light	erence: suitable object, means of observation and illumination		
		opriate reference to a dimension for diffraction or terference		[6]
			[Total	: 11]
6 (a	•	gy transferred from source / changed from some form to electrical init charge (to drive charge round a complete circuit)		[2]
(b	o) <u>and</u> E=/	power in R = I^2X (X + r)		
		er in cell = EI and algebra clear leading to ratio = X / (X + r)		[3]

Page 4		Mark Scheme: Teachers' version	Mark Scheme: Teachers' version Syllabus Pa					
		GCE A/AS LEVEL – October/November 2009	9702	21				
(c	(i) 1.4 \ 0.40	W(allow ±0.05 Ω)			[2]			
	` '	rent in circuit = $\sqrt{1.4/0.4}$ = 1.87 A						
		= $1.87 (r + 0.40)$			[3]			
(d	•	less power lost / energy wasted / lost greater efficiency (of energy transfer)		B1	[1]			
				[Total:	11]			
7 (a	a) deviation	n shown correctly		B1	[1]			
(b		deviation (not zero deviation)ble path wrt position of N			[2]			
(c	in compa	the nucleus is (very) small						
(d	•	n depends on charge on the nucleus / N / electrostatic re narge so no change in deviation	•		[2]			
	[Total: 7							