

Cambridge International Examinations

Cambridge International Advanced Subsidiary Level

CANDIDATE NAME						
CENTRE NUMBER				CANDIDATE NUMBER		
MATHEMATICS						9709/02
Paper 2 Pure M	athematics	2 (P2)		For	Examinatio	n from 2017
SPECIMEN PAPER					1 hour	15 minutes
Candidates answ	wer on the C	Question Pa	aper.			
Additional Materials: List of Formulae (MF9)			ılae (MF9)			

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all the questions.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

The use of an electronic calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 50.

This document consists of 11 printed pages and 1 blank page.

		$5^{x+3}=7$,	
giving the ans	swer correct to 3 sig	gnificant figures.		
•••••	•••••	•••••	•••••	 •
			•••••	
•••••	•••••	•••••	•••••	
			••••	
•••••				
•••••			•••••	
			•••••	
•••••				
•••••				
			•••••	
•••••		•••••	•••••	
•••••	•••••	•••••	•••••	

2 A curve has equation	Z A	curve	nas	equation
------------------------	-----	-------	-----	----------

· -	3x + 1	
<i>y</i> –	$\overline{x-5}$	•

Find the coordinates of the points on the curve at which the gradient is -4 .	[5]

	Express $8 \sin \theta + 15 \cos \theta$ in the form $R \sin(\theta + \alpha)$, where $R > 0$ and $0^{\circ} < \alpha < 90^{\circ}$. of α correct to 2 decimal places.	
		•••••
		••••••
		•••••
•	Hence solve the equation	
)	Hence solve the equation $8 \sin \theta + 15 \cos \theta = 6$	
	$8\sin\theta + 15\cos\theta = 6$	
	$8\sin\theta + 15\cos\theta = 6$	
	$8\sin\theta + 15\cos\theta = 6$	
	$8\sin\theta + 15\cos\theta = 6$	
	$8\sin\theta + 15\cos\theta = 6$	
	$8\sin\theta + 15\cos\theta = 6$	
	$8\sin\theta + 15\cos\theta = 6$	
	$8\sin\theta + 15\cos\theta = 6$	
	$8\sin\theta + 15\cos\theta = 6$	
	$8\sin\theta + 15\cos\theta = 6$	
	$8\sin\theta + 15\cos\theta = 6$	
	$8\sin\theta + 15\cos\theta = 6$	
	$8\sin\theta + 15\cos\theta = 6$	
	$8\sin\theta + 15\cos\theta = 6$	
	$8\sin\theta + 15\cos\theta = 6$	
	$8\sin\theta + 15\cos\theta = 6$	

4 (i)	By sketching a suitable pair of graphs, show that the equation	
	$\ln x = 4 - \frac{1}{2}x$	
	has exactly one real root, α .	[2]
(ii)	Verify by calculation that $4.5 < \alpha < 5.0$.	[2]
(iii)	Use the iterative formula $x_{n+1} = 8 - 2 \ln x_n$ to find α correct to 2 decimal places. Go of each iteration to 4 decimal places.	ive the result
		•••••

•	
•	
•	
•	 •••••
•	
•	
•	••••••
•	
•	••••••
•	

	$xact value of \int_0^1 3e^{1-2x} dx.$	Tilla tile exac

$x^4 + x^3 + 3x^2 + 12x + 6$	
is divided by $(x^2 - x + 4)$.	[4]

(ii)	It is given that, when
	$x^4 + x^3 + 3x^2 + px + q$
	is divided by $(x^2 - x + 4)$, the remainder is zero. Find the values of the constants p and q . [2]
(iii)	When p and q have these values, show that there is exactly one real value of x satisfying the equation
	equation $x^{4} + x^{3} + 3x^{2} + px + q = 0$
	and state what that value is. [3]

7

The parametric equations of a curve are

$$x = 6\sin^2 t$$
, $y = 2\sin 2t + 3\cos 2t$,

for $0 \le t < \pi$. The curve crosses the *x*-axis at points *B* and *D* and the stationary points are *A* and *C*, as shown in the diagram.

(i)	Show that $\frac{d}{d}$	$\frac{y}{x} = \frac{2}{3}\cot 2t - \frac{2}{3}\cot 2t$	1.		[5]
	•••••	••••••		••••••	

(ii)	Find the values of t at A and C , giving each answer correct to 3 decimal places.	[3]
		•••••
		••••••
(:::)	Find the value of the gradient of the curve at <i>B</i> .	[2]
(111)	I find the value of the gradient of the curve at B.	[3]
(111)	That the value of the gradient of the curve at B.	
(III <i>)</i>		
(III)		
(III)		
(III)		
(III <i>)</i>		
(III)		
(III)		
(III)		

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.