

**CANDIDATE** 

# UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

MMM. Aremedabers.com

1 hour 15 minutes

| *        |  |
|----------|--|
| _        |  |
| 5        |  |
| $\infty$ |  |
| 0        |  |
| _        |  |
| 0        |  |
| $\infty$ |  |
| 6        |  |
| $\infty$ |  |
| 0        |  |
| ~        |  |

| INAIVIE                             |  |                     |         |
|-------------------------------------|--|---------------------|---------|
| CENTRE<br>NUMBER                    |  | CANDIDATE<br>NUMBER |         |
| CHEMISTRY                           |  |                     | 0620/32 |
| Paper 3 (Extended) October/November |  | ober/November 2012  |         |

Candidates answer on the Question Paper.

No Additional Materials are required.

#### **READ THESE INSTRUCTIONS FIRST**

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a pencil for any diagrams, graphs or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

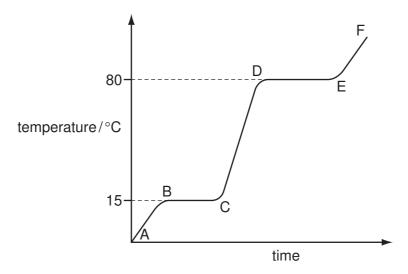
Answer all questions.

A copy of the Periodic Table is printed on page 16.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [ ] at the end of each question or part question.

| For Examiner's Use |  |
|--------------------|--|
| 1                  |  |
| 2                  |  |
| 3                  |  |
| 4                  |  |
| 5                  |  |
| 6                  |  |
| 7                  |  |
| Total              |  |


This document consists of 13 printed pages and 3 blank pages.



|             |                   | 2                                                                                                                                                                                                               |
|-------------|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Th          | is qu             | estion is concerned with the elements in Period 5, Rb to Xe.                                                                                                                                                    |
| (a)         | ) The             | e electron distributions of some of these elements are given in the following list.                                                                                                                             |
|             | ele<br>ele<br>ele | ment <b>A</b> 2 + 8 + 18 + 8 + 2  ment <b>B</b> 2 + 8 + 18 + 18 + 8  ment <b>C</b> 2 + 8 + 18 + 18 + 5  ment <b>D</b> 2 + 8 + 18 + 18 + 6  ment <b>E</b> 2 + 8 + 18 + 18 + 4  ment <b>F</b> 2 + 8 + 18 + 18 + 7 |
|             | (i)               | Identify element <b>C</b> . [1]                                                                                                                                                                                 |
|             | (ii)              | Which element in the list does not form any compounds?                                                                                                                                                          |
|             |                   | [1]                                                                                                                                                                                                             |
|             | (iii)             | Which element in the list forms a chloride of the type $XCl_2$ ?                                                                                                                                                |
|             |                   | [1]                                                                                                                                                                                                             |
|             | (iv)              | Which <b>two</b> elements would react together to form a compound of the type XY <sub>4</sub> ?                                                                                                                 |
|             |                   | [1]                                                                                                                                                                                                             |
|             | (v)               | Which element in the list would react with cold water to form an alkaline solution and hydrogen?                                                                                                                |
|             |                   | [1]                                                                                                                                                                                                             |
| <b>(b</b> ) |                   | edict <b>two</b> differences in physical properties and <b>two</b> differences in chemical properties ween rubidium and the transition metal niobium.                                                           |
|             | phy               | sical                                                                                                                                                                                                           |
|             |                   |                                                                                                                                                                                                                 |
|             |                   |                                                                                                                                                                                                                 |
|             | che               | emical                                                                                                                                                                                                          |
|             |                   |                                                                                                                                                                                                                 |

[Total: 9]

2 The diagram shows a heating curve for a sample of compound X.



| (a) | Is X a solid, | a liquid | or a gas | at room | temperature, | 20°C? |
|-----|---------------|----------|----------|---------|--------------|-------|
|-----|---------------|----------|----------|---------|--------------|-------|

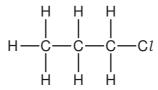
|--|

**(b)** Write an equation for the equilibrium which exists in region BC.

| [0] |
|-----|
| וכו |
|     |

(c) Name the change of state which occurs in region DE.

| _ |    | _ |
|---|----|---|
|   | 11 | 1 |
|   |    |   |


(d) Explain how the curve shows that a pure sample of compound X was used.

| [2] |
|-----|

[Total: 6]

For Examiner's

- 3 Many organic compounds which contain a halogen have chloro, bromo or iodo in their name.
  - (a) The following diagram shows the structure of 1-chloropropane.



(i) Draw the structure of an isomer of this compound.

[1]

| (ii) | Describe how 1-chloropropane could be made from propane. |  |
|------|----------------------------------------------------------|--|
|      |                                                          |  |

[2]

(iii) Suggest an explanation why the method you have described in (ii) does not produce a pure sample of 1-chloropropane.

.....

(b) Organic halides react with water to form an alcohol and a halide ion.

$$\text{CH}_3\text{-CH}_2\text{-I} + \text{H}_2\text{O} \rightarrow \text{CH}_3\text{-CH}_2\text{-OH} + \text{I}^-$$

(i) Describe how you could show that the reaction mixture contained an iodide ion.

.....

.....[2]

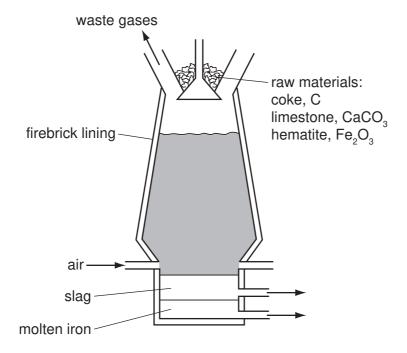
(ii) Name the alcohol formed when 1-chloropropane reacts with water.

.....[1]

(c) The speed (rate) of reaction between an organic halide and water can be measured by the following method.

A mixture of 10 cm<sup>3</sup> of aqueous silver nitrate and 10 cm<sup>3</sup> of ethanol is warmed to 60 °C. Drops of the organic halide are added and the time taken for a precipitate to form is measured.

Silver ions react with the halide ions to form a precipitate of the silver halide.


$$Ag^{+}(aq) + X^{-}(aq) \rightarrow AgX(s)$$

Typical results for four experiments, **A**, **B**, **C** and **D**, are given in the table.

| experiment | organic halide | number of drops | time/min |
|------------|----------------|-----------------|----------|
| Α          | bromobutane    | 4               | 6        |
| В          | bromobutane    | 8               | 3        |
| С          | chlorobutane   | 4               | 80       |
| D          | iodobutane     | 4               | 0.1      |

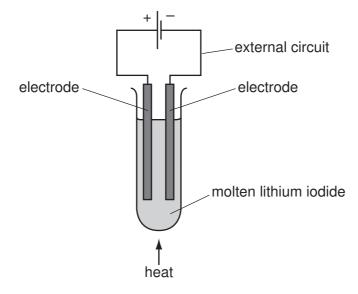
| (i) Explain why it takes longer to produce a precipitate in experiment <b>A</b> than in <b>B</b> .                  |
|---------------------------------------------------------------------------------------------------------------------|
| [2]                                                                                                                 |
| (ii) How does the order of reactivity of the organic halides compare with the order of reactivity of the halogens?  |
|                                                                                                                     |
| [2]                                                                                                                 |
| (iii) Explain why the time taken to produce a precipitate would increase if the experiments were repeated at 50 °C. |
|                                                                                                                     |
|                                                                                                                     |
| [3]                                                                                                                 |
| [Total: 15]                                                                                                         |

4 Iron is extracted from its ore, hematite, in the blast furnace.



| (a) |              | temperature inside the blast furnace can rise to 2000 °C. te an equation for the exothermic reaction which causes this high temperature. |
|-----|--------------|------------------------------------------------------------------------------------------------------------------------------------------|
|     |              |                                                                                                                                          |
| (b) | Car<br>to ir | bon monoxide is formed in the blast furnace. This reduces the ore hematite, ${\rm Fe_2O_3}$ on.                                          |
|     | (i)          | Explain how carbon monoxide is formed in the blast furnace.                                                                              |
|     |              |                                                                                                                                          |
|     |              | [2]                                                                                                                                      |
|     | (ii)         | Write an equation for the reduction of hematite by carbon monoxide.                                                                      |
|     |              | [2]                                                                                                                                      |
| (c) |              | lain why it is necessary to add limestone, calcium carbonate, to the blast furnace ude an equation in your explanation.                  |
|     |              |                                                                                                                                          |
|     |              |                                                                                                                                          |
|     |              | [3                                                                                                                                       |

© UCLES 2012 0620/32/O/N/12


| (d) |      | Most of the iron from the blast furnace is converted into mild steel. A method of preventir the steel from rusting is coating it with zinc.                             |  |  |  |  |  |  |  |  |
|-----|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
|     | (i)  | What is the name of this method of rust prevention?                                                                                                                     |  |  |  |  |  |  |  |  |
|     |      | [1]                                                                                                                                                                     |  |  |  |  |  |  |  |  |
|     | (ii) | Explain, using the idea of electron transfer, why zinc-coated steel does not rust even when the coating is scratched and the steel is in contact with oxygen and water. |  |  |  |  |  |  |  |  |
|     |      |                                                                                                                                                                         |  |  |  |  |  |  |  |  |
|     |      |                                                                                                                                                                         |  |  |  |  |  |  |  |  |
|     |      |                                                                                                                                                                         |  |  |  |  |  |  |  |  |
|     |      | [3]                                                                                                                                                                     |  |  |  |  |  |  |  |  |
|     |      | [Total: 12]                                                                                                                                                             |  |  |  |  |  |  |  |  |

| foods and drinks.        | For<br>Examiner's<br>Use |
|--------------------------|--------------------------|
| [2]                      |                          |
| [2]                      |                          |
| would see when           |                          |
| [2]                      |                          |
| an acid.                 |                          |
| ate the maximum          |                          |
|                          |                          |
| an acid. ate the maximum |                          |

[Total: 9]

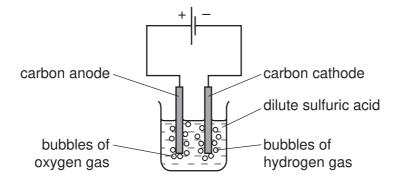
5

- **6** During electrolysis, ions move in the electrolyte and electrons move in the external circuit. Reactions occur at the electrodes.
  - (a) The diagram shows the electrolysis of molten lithium iodide.



(i) Draw an arrow on the diagram to show the direction of the electron flow in the external circuit. [1]

| (ii)  | Electrons are supplied to the external circuit. How and where is this done?                           |
|-------|-------------------------------------------------------------------------------------------------------|
|       | [2]                                                                                                   |
| (iii) | Explain why solid lithium iodide does not conduct electricity but when molten it is a good conductor. |


**(b)** The results of experiments on electrolysis are shown in the following table. Complete the table. The first line has been done as an example.

......[1]

| electrolyte                             | electrodes | product at cathode | product at anode | change to electrolyte |
|-----------------------------------------|------------|--------------------|------------------|-----------------------|
| molten lithium iodide                   | carbon     | lithium            | iodine           | used up               |
| aqueous copper(II) sulfate              | platinum   |                    | oxygen           |                       |
| concentrated aqueous potassium chloride | carbon     |                    | chlorine         |                       |

For Examiner's Use

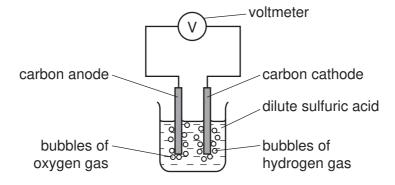
(c) The diagram below shows the electrolysis of dilute sulfuric acid. Hydrogen is formed at the negative electrode (cathode) and oxygen at the positive electrode (anode) and the concentration of sulfuric acid increases.



The ions present in the dilute acid are  $H^+(aq)$ ,  $OH^-(aq)$  and  $SO_4^{2-}(aq)$ .

(i) Write an equation for the reaction at the negative electrode (cathode).

[2]


(ii) Complete the equation for the reaction at the positive electrode (anode).

$$4OH^{-}(aq) \rightarrow O_{2}(g) + .....H_{2}O(I) + ......$$
 [1]

(iii) Suggest an explanation of why the concentration of the sulfuric acid increases.

\_\_\_\_\_\_[1]

(d) In the apparatus used in (c), the power supply is removed and immediately replaced by a voltmeter.



A reading on the voltmeter shows that electrical energy is being produced. Suggest an explanation for how this energy is produced.

.....[3]

[Total: 15]

For

Examiner's Use

| 7 The alcohols form a homologous series. The first member of this series is methanol, C |       |                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |  |
|-----------------------------------------------------------------------------------------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| (a)                                                                                     | (i)   | Give the general formula of the alcohols.                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |  |
|                                                                                         |       | [1]                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |  |
|                                                                                         | (ii)  | The mass of one mole of an alcohol is 116 g. What is its formula? Show your reasoning.                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |  |
|                                                                                         | (iii) | [2]                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |  |
| (                                                                                       |       | Draw a diagram showing the arrangement of the outer (valency) electrons in one molecule of methanol.                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |  |
|                                                                                         |       | Use x to represent an electron from a carbon atom. Use o to represent an electron from a hydrogen atom. Use ● to represent an electron from an oxygen atom. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |  |
|                                                                                         |       |                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |  |
|                                                                                         |       |                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |  |
|                                                                                         |       |                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |  |
|                                                                                         |       |                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |  |
|                                                                                         |       | [3]                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |  |
| (b)                                                                                     | Met   | chanol is manufactured using the following method.                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |  |
|                                                                                         |       | $CH_4(g) + H_2O(g) \rightarrow CO(g) + 3H_2(g)$ reaction 1                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |  |
|                                                                                         |       | $CO(g) + 2H_2(g) \rightleftharpoons CH_3OH(g)$ reaction 2                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |  |
|                                                                                         | The   | conditions for reaction 2 are:                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |  |
|                                                                                         | cata  | alyst a mixture of copper, zinc oxide and aluminium oxide                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |  |
|                                                                                         | The   | e forward reaction is exothermic.                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |  |
|                                                                                         | (i)   | Why is high pressure used in reaction 2?                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |  |
|                                                                                         |       |                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |  |
|                                                                                         |       | [2]                                                                                                                                                         | ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |  |
|                                                                                         | (a)   | (a) (i) (ii) (iii) The present terms.                                                                                                                       | <ul> <li>(ii) The mass of one mole of an alcohol is 116g. What is its formula? Show your reasoning.</li> <li>[2]</li> <li>(iii) Draw a diagram showing the arrangement of the outer (valency) electrons in one molecule of methanol.</li> <li>Use x to represent an electron from a carbon atom. Use o to represent an electron from a hydrogen atom.</li> <li>Use • to represent an electron from an oxygen atom.</li> <li>Use • to represent an electron from an oxygen atom.</li> <li>The conditions for reaction 2 are:</li> <li>pressure 100 atmospheres catalyst a mixture of copper, zinc oxide and aluminium oxide temperature 250 °C</li> <li>The forward reaction is exothermic.</li> <li>(i) Why is high pressure used in reaction 2?</li> </ul> |  |  |  |  |  |  |  |

For Examiner's Use

|     | (ii) | Explain why using a catalyst at 250 $^{\circ}\text{C}$ is preferred to using a higher temperature of 350 $^{\circ}\text{C}$ and no catalyst. |
|-----|------|----------------------------------------------------------------------------------------------------------------------------------------------|
|     |      |                                                                                                                                              |
|     |      |                                                                                                                                              |
|     |      | [3]                                                                                                                                          |
| (c) | Met  | hanol is oxidised by atmospheric oxygen. This reaction is catalysed by platinum.                                                             |
|     | (i)  | The products of this reaction include a carboxylic acid. Give its name and structural formula.                                               |
|     |      | name                                                                                                                                         |
|     |      | structural formula showing all bonds                                                                                                         |
|     |      |                                                                                                                                              |
|     |      |                                                                                                                                              |
|     |      |                                                                                                                                              |
|     |      | [2]                                                                                                                                          |
|     | (ii) | Deduce the name of the ester formed by the reaction of methanol with the carboxylic acid named in (i).                                       |
|     |      | [1]                                                                                                                                          |
|     |      | [Total: 14]                                                                                                                                  |

© UCLES 2012 0620/32/O/N/12

### **BLANK PAGE**

### **BLANK PAGE**

© UCLES 2012 0620/32/O/N/12

### **BLANK PAGE**

16

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included the publisher will be pleased to make amends at the earliest possible opportunity.

## DATA SHEET The Periodic Table of the Elements

|                                                                                                  |                             |                                                           |                                    |                                    |                                     |                                   |                                     | ilouic ia                            |                                   |                                | 00                                |                                     |                                    |                                     |                                     |                                     |                                  |
|--------------------------------------------------------------------------------------------------|-----------------------------|-----------------------------------------------------------|------------------------------------|------------------------------------|-------------------------------------|-----------------------------------|-------------------------------------|--------------------------------------|-----------------------------------|--------------------------------|-----------------------------------|-------------------------------------|------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|----------------------------------|
|                                                                                                  |                             |                                                           |                                    |                                    |                                     |                                   |                                     | Gr                                   | oup                               |                                |                                   |                                     |                                    |                                     |                                     |                                     |                                  |
| I                                                                                                | II                          |                                                           |                                    |                                    |                                     |                                   |                                     |                                      |                                   |                                |                                   | III                                 | IV                                 | V                                   | VI                                  | VII                                 | 0                                |
|                                                                                                  |                             |                                                           |                                    |                                    |                                     |                                   | 1<br>H<br>Hydrogen                  |                                      |                                   |                                |                                   |                                     |                                    |                                     |                                     |                                     | 4<br>He<br>Helium                |
| 7<br><b>Li</b><br>Lithium                                                                        | 9<br><b>Be</b><br>Beryllium |                                                           |                                    |                                    |                                     |                                   |                                     | ı                                    |                                   |                                |                                   | 11 <b>B</b> Boron 5                 | 12<br>C<br>Carbon                  | 14<br>N<br>Nitrogen                 | 16<br>O<br>Oxygen<br>8              | 19<br><b>F</b><br>Fluorine          | 20<br><b>Ne</b><br>Neon          |
| 23<br><b>Na</b><br>Sodium                                                                        | Mg<br>Magnesium             |                                                           |                                    |                                    |                                     |                                   |                                     |                                      |                                   |                                |                                   | 27<br><b>A 1</b><br>Aluminium<br>13 | 28<br>Si<br>Silicon                | 31<br>P<br>Phosphorus<br>15         | 32<br><b>S</b><br>Sulfur            | 35.5<br><b>C1</b><br>Chlorine<br>17 | 40<br><b>Ar</b><br>Argon         |
| 39<br><b>K</b><br>Potassium                                                                      | 40<br>Ca<br>Calcium<br>20   | 45<br>Sc<br>Scandium<br>21                                | 48<br><b>Ti</b><br>Titanium<br>22  | 51<br><b>V</b><br>Vanadium<br>23   | 52<br>Cr<br>Chromium<br>24          | 55<br>Mn<br>Manganese<br>25       | 56<br><b>Fe</b><br>Iron             | 59<br>Co<br>Cobalt<br>27             | 59<br><b>Ni</b><br>Nickel<br>28   | 64<br>Cu<br>Copper<br>29       | 65<br><b>Zn</b><br>Zinc           | 70<br><b>Ga</b><br>Gallium<br>31    | 73<br><b>Ge</b><br>Germanium<br>32 | 75<br><b>As</b><br>Arsenic          | 79<br><b>Se</b><br>Selenium<br>34   | Bromine 35                          | 84<br><b>Kr</b><br>Krypton<br>36 |
| 85<br><b>Rb</b><br>Rubidium<br>37                                                                | 88<br>Sr<br>Strontium<br>38 | 89<br><b>Y</b><br>Yttrium<br>39                           | 91<br><b>Zr</b><br>Zirconium<br>40 | 93<br><b>Nb</b><br>Niobium<br>41   | 96<br><b>Mo</b><br>Molybdenum<br>42 | Tc<br>Technetium<br>43            | 101<br><b>Ru</b><br>Ruthenium<br>44 | 103<br><b>Rh</b><br>Rhodium<br>45    | 106<br>Pd<br>Palladium<br>46      | 108<br><b>Ag</b><br>Silver     | Cadmium 48                        | 115<br><b>I n</b><br>Indium<br>49   | 119 <b>Sn</b> Tin                  | 122<br><b>Sb</b><br>Antimony<br>51  | 128<br><b>Te</b><br>Tellurium<br>52 | 127<br> <br>  lodine<br>  53        | 131<br><b>Xe</b><br>Xenon<br>54  |
| 133<br>Cs<br>Caesium<br>55                                                                       | 137<br><b>Ba</b><br>Barium  | 139<br><b>La</b><br>Lanthanum<br>57 *                     | 178<br><b>Hf</b> Hafnium  72       | 181<br><b>Ta</b><br>Tantalum<br>73 | 184<br><b>W</b><br>Tungsten<br>74   | 186<br><b>Re</b><br>Rhenium<br>75 | 190<br><b>Os</b><br>Osmium<br>76    | 192<br><b>I r</b><br>Iridium         | 195<br>Pt<br>Platinum<br>78       | 197<br><b>Au</b><br>Gold<br>79 | 201<br><b>Hg</b><br>Mercury<br>80 | 204<br><b>T 1</b><br>Thallium<br>81 | 207<br><b>Pb</b><br>Lead<br>82     | 209<br><b>Bi</b><br>Bismuth<br>83   | Po<br>Polonium<br>84                | At<br>Astatine<br>85                | Rn<br>Radon<br>86                |
| Fr<br>Francium<br>87                                                                             | 226<br><b>Ra</b><br>Radium  | ACT Actinium 89 †                                         |                                    |                                    |                                     |                                   |                                     |                                      |                                   |                                |                                   |                                     |                                    |                                     |                                     |                                     |                                  |
| *58-71 Lanthanoid series †90-103 Actinoid series  140 Ce Pr Praseodymium 59  141 Praseodymium 59 |                             |                                                           | Pr<br>Praseodymium                 | 144<br>Nd<br>Neodymium<br>60       | Pm<br>Promethium<br>61              | 150<br>Sm<br>Samarium<br>62       | 152<br><b>Eu</b><br>Europium<br>63  | 157<br><b>Gd</b><br>Gadolinium<br>64 | 159<br><b>Tb</b><br>Terbium<br>65 | Dy Dysprosium 66               | 165<br><b>Ho</b><br>Holmium<br>67 | 167<br><b>Er</b><br>Erbium<br>68    | 169<br><b>Tm</b><br>Thulium<br>69  | 173<br><b>Yb</b><br>Ytterbium<br>70 | 175<br><b>Lu</b><br>Lutetium<br>71  |                                     |                                  |
| Key                                                                                              | <b>X</b>                    | a = relative ator <b>X</b> = atomic sym  b = proton (ator | bol                                | 232<br><b>Th</b><br>Thorium<br>90  | Pa<br>Protactinium<br>91            | 238<br><b>U</b><br>Uranium<br>92  | Np<br>Neptunium<br>93               | Pu<br>Plutonium<br>94                | Am<br>Americium<br>95             | Cm<br>Curium<br>96             | <b>Bk</b><br>Berkelium<br>97      | Cf<br>Californium<br>98             | Es<br>Einsteinium<br>99            | Fm<br>Fermium<br>100                | Md<br>Mendelevium<br>101            | No<br>Nobelium<br>102               | <b>Lr</b><br>Lawrencium<br>103   |

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).